BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 14699413)

  • 1. The site of saccadic suppression.
    Thilo KV; Santoro L; Walsh V; Blakemore C
    Nat Neurosci; 2004 Jan; 7(1):13-4. PubMed ID: 14699413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial magnetic stimulation reveals high test-retest reliability for phosphenes but not for suppression of visual perception.
    Siniatchkin M; Schlicke C; Stephani U
    Clin Neurophysiol; 2011 Dec; 122(12):2475-81. PubMed ID: 21641863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Examination of the visual system with transcranial magnetic stimulation].
    Meyer BU; Diehl RR
    Nervenarzt; 1992 Jun; 63(6):328-34. PubMed ID: 1635614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphene induction and the generation of saccadic eye movements by striate cortex.
    Tehovnik EJ; Slocum WM; Carvey CE; Schiller PH
    J Neurophysiol; 2005 Jan; 93(1):1-19. PubMed ID: 15371496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphene thresholds evoked with single and double TMS pulses.
    Kammer T; Baumann LW
    Clin Neurophysiol; 2010 Mar; 121(3):376-9. PubMed ID: 20079689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Psychological aspects of perception of magnetophosphenes and electrophosphenes].
    Reissenweber J; David E; Pfotenhauer M
    Biomed Tech (Berl); 1992 Mar; 37(3):42-5. PubMed ID: 1581477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent changes in cortical excitability after prolonged visual deprivation.
    Pitskel NB; Merabet LB; Ramos-Estebanez C; Kauffman T; Pascual-Leone A
    Neuroreport; 2007 Oct; 18(16):1703-7. PubMed ID: 17921872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex.
    Silvanto J; Lavie N; Walsh V
    J Neurophysiol; 2006 Aug; 96(2):941-5. PubMed ID: 16624999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in the retinal image of a visual scene during saccades contribute to the perception of reached gaze direction in humans.
    Blouin J; Bresciani JP; Gauthier GM
    Neurosci Lett; 2004 Feb; 357(1):29-32. PubMed ID: 15036606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS).
    Sparing R; Dambeck N; Stock K; Meister IG; Huetter D; Boroojerdi B
    Neurosci Lett; 2005 Jul; 382(3):312-6. PubMed ID: 15925110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-dependent electrical stimulation of the visual cortex.
    Kanai R; Chaieb L; Antal A; Walsh V; Paulus W
    Curr Biol; 2008 Dec; 18(23):1839-43. PubMed ID: 19026538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes.
    Laakso I; Hirata A
    J Neural Eng; 2013 Aug; 10(4):046009. PubMed ID: 23813466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compression of visual space before saccades.
    Ross J; Morrone MC; Burr DC
    Nature; 1997 Apr; 386(6625):598-601. PubMed ID: 9121581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From qualia to quantia: a system to document and quantify phosphene percepts elicited by non-invasive neurostimulation of the human occipital cortex.
    Elkin-Frankston S; Fried P; Rushmore RJ; Valero-Cabré A
    J Neurosci Methods; 2011 Jun; 198(2):149-57. PubMed ID: 21419796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.