These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14700095)

  • 1. In vitro analysis of AcrySof intraocular lens glistening.
    Shiba T; Mitooka K; Tsuneoka H
    Eur J Ophthalmol; 2003; 13(9-10):759-63. PubMed ID: 14700095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1).
    Gregori NZ; Spencer TS; Mamalis N; Olson RJ
    J Cataract Refract Surg; 2002 Jul; 28(7):1262-8. PubMed ID: 12106738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change.
    Kato K; Nishida M; Yamane H; Nakamae K; Tagami Y; Tetsumoto K
    J Cataract Refract Surg; 2001 Sep; 27(9):1493-8. PubMed ID: 11566536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical and experimental observation of glistening in acrylic intraocular lenses.
    Miyata A; Uchida N; Nakajima K; Yaguchi S
    Jpn J Ophthalmol; 2001; 45(6):564-9. PubMed ID: 11754896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium water content and glistenings in acrylic intraocular lenses.
    Miyata A; Yaguchi S
    J Cataract Refract Surg; 2004 Aug; 30(8):1768-72. PubMed ID: 15313305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glistening phenomenon in acrylic hydrophobic intraocular lenses – how do perioperative factors and concomitant diseases effect it’s incidence and severity.
    Godlewska A; Owczarek G; Jurowski P
    Klin Oczna; 2016; 118(3):191-6. PubMed ID: 30088382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses.
    Thomes BE; Callaghan TA
    Clin Ophthalmol; 2013; 7():1529-34. PubMed ID: 23926419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical and experimental observation of glistening in acrylic intraocular lenses].
    Miyata A; Uchida N; Nakajima K; Yaguchi S
    Nippon Ganka Gakkai Zasshi; 2000 May; 104(5):349-53. PubMed ID: 10835890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro glistening formation in six different foldable hydrophobic intraocular lenses.
    Tandogan T; Auffarth GU; Son HS; Merz P; Choi CY; Khoramnia R
    BMC Ophthalmol; 2021 Mar; 21(1):126. PubMed ID: 33685428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro analysis of AcrySof intraocular lens glistenings in AcryPak and Wagon Wheel packaging.
    Omar O; Pirayesh A; Mamalis N; Olson RJ
    J Cataract Refract Surg; 1998 Jan; 24(1):107-13. PubMed ID: 9494907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glistening formation in a new hydrophobic acrylic intraocular lens.
    Yildirim TM; Fang H; Schickhardt SK; Wang Q; Merz PR; Auffarth GU
    BMC Ophthalmol; 2020 May; 20(1):186. PubMed ID: 32375708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and Experimental Observation of Glistening in Acrylic Intraocular Lenses.
    Miyata A; Uchida N; Nakajima K; Yaguchi S
    Jpn J Ophthalmol; 2000 Nov; 44(6):693. PubMed ID: 11094201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of in vitro accelerated glistening formation in foldable hydrophobic intraocular lenses.
    Tandogan T; Auffarth GU; Choi CY; Son HS; Khoramnia R
    Int Ophthalmol; 2021 Sep; 41(9):3073-3080. PubMed ID: 34013467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study of glistening in silicone intraocular lenses].
    Miyata A; Uchida N; Nakajima K; Yaguchi S
    Nippon Ganka Gakkai Zasshi; 2002 Feb; 106(2):112-4. PubMed ID: 11915372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Results of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in uveitic eyes with cataract: comparison to a control group.
    Abela-Formanek C; Amon M; Schauersberger J; Kruger A; Nepp J; Schild G
    J Cataract Refract Surg; 2002 Jul; 28(7):1141-52. PubMed ID: 12106722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of posterior capsule opacification using different intraocular lenses (results of one-year clinical study).
    Zemaitiene R; Jasinskas V; Barzdziukas V; Auffarth GU
    Medicina (Kaunas); 2004; 40(8):721-30. PubMed ID: 15299988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posterior capsule opacification with the iMics1 NY-60 and AcrySof SN60WF 1-piece hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial.
    Leydolt C; Schriefl S; Stifter E; Haszcz A; Menapace R
    Am J Ophthalmol; 2013 Aug; 156(2):375-381.e2. PubMed ID: 23677137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of new-generation glistening-free hydrophobic acrylic intraocular lens material.
    Pagnoulle C; Bozukova D; Gobin L; Bertrand V; Gillet-De Pauw MC
    J Cataract Refract Surg; 2012 Jul; 38(7):1271-7. PubMed ID: 22727297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glistenings in foldable intraocular lenses.
    Tognetto D; Toto L; Sanguinetti G; Ravalico G
    J Cataract Refract Surg; 2002 Jul; 28(7):1211-6. PubMed ID: 12106730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of microvacuole formation in five intraocular lens models made of different hydrophobic materials.
    Yildirim TM; Schickhardt SK; Wang Q; Friedmann E; Khoramnia R; Auffarth GU
    PLoS One; 2021; 16(4):e0250860. PubMed ID: 33930084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.