These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14700134)

  • 1. Forecasting peak daily ozone levels: part 2--A regression with time series errors model having a principal component trigger to forecast 1999 and 2002 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2003 Dec; 53(12):1472-89. PubMed ID: 14700134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting peak daily ozone levels--I. A regression with time series errors model having a principal component trigger to fit 1991 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1064-74. PubMed ID: 12269667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a Box-Jenkins multivariate time-series model to simulate ground-level peak daily one-hour ozone concentrations at Ta-Liao in Taiwan.
    Liu PW
    J Air Waste Manag Assoc; 2007 Sep; 57(9):1078-90. PubMed ID: 17912927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting.
    Cobourn WG; Dolcine L; French M; Hubbard MC
    J Air Waste Manag Assoc; 2000 Nov; 50(11):1999-2009. PubMed ID: 11111344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ozone predictions in Atlanta, Georgia: analysis of the 1999 ozone season.
    Cardelino C; Chang M; St John J; Murphey B; Cordle J; Ballagas R; Patterson L; Powell K; Stogner J; Zimmer-Dauphinee S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1227-36. PubMed ID: 11518297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia.
    Chang ME; Cardelino C
    J Air Waste Manag Assoc; 2000 Nov; 50(11):2010-24. PubMed ID: 11111345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting daily maximum surface ozone concentrations in Brunei Darussalam--an ARIMA modeling approach.
    Kumar K; Yadav AK; Singh MP; Hassan H; Jain VK
    J Air Waste Manag Assoc; 2004 Jul; 54(7):809-14. PubMed ID: 15303293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the vertical profile of ozone based on ground-level ozone observations and cloud cover.
    Kim GD; Davis WT; Miller TL
    J Air Waste Manag Assoc; 2004 Apr; 54(4):483-94. PubMed ID: 15115377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The New England Air Quality Forecasting Pilot Program: development of an evaluation protocol and performance benchmark.
    Kang D; Eder BK; Stein AF; Grell GA; Peckham SE; McHenry J
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1782-96. PubMed ID: 16408683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meteorological factors of ozone predictability at Houston, Texas.
    Draxler RR
    J Air Waste Manag Assoc; 2000 Feb; 50(2):259-71. PubMed ID: 10680356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in meteorologically adjusted ozone concentrations in six Kentucky metro areas, 1998-2002.
    Cobourn WG; Lin Y
    J Air Waste Manag Assoc; 2004 Nov; 54(11):1383-93. PubMed ID: 15587552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of environmental data as the basis of forecasting: an air quality application.
    Slini T; Karatzas K; Moussiopoulos N
    Sci Total Environ; 2002 Apr; 288(3):227-37. PubMed ID: 11991526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the long-term trend in the extreme values of tropospheric ozone using a multivariate approach.
    Menezes KA; Shively TS
    Environ Sci Technol; 2001 Jun; 35(12):2554-61. PubMed ID: 11432563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the sensitivity and reliability of the relative reduction factor approach in the development of 8-hr ozone attainment plans.
    Jones JM; Hogrefe C; Henry RF; Ku JY; Sistla G
    J Air Waste Manag Assoc; 2005 Jan; 55(1):13-9. PubMed ID: 15704536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015.
    Dreessen J; Sullivan J; Delgado R
    J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of urban ground-level ozone in Korea.
    Jo WK; Nam CW
    J Air Waste Manag Assoc; 1999 Dec; 49(12):1425-33. PubMed ID: 11002830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural network-derived trends in daily maximum surface ozone concentrations.
    Gardner M; Dorling S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1202-10. PubMed ID: 11518294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: an ensemble neural network approach.
    Cannon AJ; Lord ER
    J Air Waste Manag Assoc; 2000 Mar; 50(3):322-39. PubMed ID: 10734705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.