These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1470023)

  • 21. Foot motion in children shoes: a comparison of barefoot walking with shod walking in conventional and flexible shoes.
    Wolf S; Simon J; Patikas D; Schuster W; Armbrust P; Döderlein L
    Gait Posture; 2008 Jan; 27(1):51-9. PubMed ID: 17353125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of foot orthotics on calcaneal eversion during standing and treadmill walking for subjects with abnormal pronation.
    Genova JM; Gross MT
    J Orthop Sports Phys Ther; 2000 Nov; 30(11):664-75. PubMed ID: 11104377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateral stability in sideward cutting movements.
    Stacoff A; Steger J; Stüssi E; Reinschmidt C
    Med Sci Sports Exerc; 1996 Mar; 28(3):350-8. PubMed ID: 8776223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles.
    Verdejo R; Mills NJ
    J Biomech; 2004 Sep; 37(9):1379-86. PubMed ID: 15275845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of shoe inserts on kinematics, center of pressure, and leg joint moments during running.
    Nigg BM; Stergiou P; Cole G; Stefanyshyn D; Mündermann A; Humble N
    Med Sci Sports Exerc; 2003 Feb; 35(2):314-9. PubMed ID: 12569222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A kinematic comparison of overground and treadmill running.
    Nigg BM; De Boer RW; Fisher V
    Med Sci Sports Exerc; 1995 Jan; 27(1):98-105. PubMed ID: 7898346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-shoe pressure distribution in "unstable" (MBT) shoes and flat-bottomed training shoes: a comparative study.
    Stewart L; Gibson JN; Thomson CE
    Gait Posture; 2007 Apr; 25(4):648-51. PubMed ID: 16901702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.
    Shultz R; Jenkyn T
    Med Eng Phys; 2012 Jan; 34(1):118-22. PubMed ID: 21890394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring a model of asymmetric shoe wear on lower limb performance.
    Sole CC; Milosavljevic S; Sole G; Sullivan SJ
    Phys Ther Sport; 2010 May; 11(2):60-5. PubMed ID: 20381003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The shifting of the torsion axis of the foot during the stance phase of lateral cutting movements.
    Graf ES; Stefanyshyn DJ
    J Biomech; 2012 Oct; 45(15):2680-3. PubMed ID: 22959787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A one year aging process of a soccer shoe does not increase plantar loading of the foot during soccer specific movements].
    Eils E; Streyl M
    Sportverletz Sportschaden; 2005 Sep; 19(3):140-5. PubMed ID: 16167267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Plantar pressure measurement in children and youths during sports activities].
    Lampe R; Mitternacht J; Gerdesmeyer L; Gradinger R
    Klin Padiatr; 2005; 217(2):70-5. PubMed ID: 15770577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic performance assessment of selected sport shoes on impact forces.
    Dufek JS; Bates BT; Davis HP; Malone LA
    Med Sci Sports Exerc; 1991 Sep; 23(9):1062-7. PubMed ID: 1943627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of shoe sole thickness on joint position sense.
    Sekizawa K; Sandrey MA; Ingersoll CD; Cordova ML
    Gait Posture; 2001 May; 13(3):221-8. PubMed ID: 11323228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.
    Eslami M; Begon M; Farahpour N; Allard P
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):74-80. PubMed ID: 17049700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of modified short-leg walkers on ground reaction force characteristics.
    Keefer M; King J; Powell D; Krusenklaus JH; Zhang S
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1172-7. PubMed ID: 18701198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of gyroscopic sensors for objective evaluation of trimming and shoeing to alter time between heel and toe lift-off at end of the stance phase in horses walking and trotting on a treadmill.
    Keegan KG; Satterley JM; Skubic M; Yonezawa Y; Cooley JM; Wilson DA; Kramer J
    Am J Vet Res; 2005 Dec; 66(12):2046-54. PubMed ID: 16379645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of off-the-shelf in-shoe heel inserts on forefoot plantar pressure.
    Ramanathan AK; John MC; Arnold GP; Cochrane L; Abboud RJ
    Gait Posture; 2008 Nov; 28(4):533-7. PubMed ID: 18434158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.