BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 14700365)

  • 1. Oral breathing challenge in participants with vocal attrition.
    Sivasankar M; Fisher KV
    J Speech Lang Hear Res; 2003 Dec; 46(6):1416-27. PubMed ID: 14700365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral breathing increases Pth and vocal effort by superficial drying of vocal fold mucosa.
    Sivasankar M; Fisher KV
    J Voice; 2002 Jun; 16(2):172-81. PubMed ID: 12150370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of obligatory mouth breathing, during realistic activities, on voice measures.
    Sivasankar MP; Erickson-Levendoski E
    J Voice; 2012 Nov; 26(6):813.e9-13. PubMed ID: 22921296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.
    Patel RR; Walker R; Sivasankar PM
    J Voice; 2016 Jul; 30(4):427-33. PubMed ID: 26277075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonatory effects of airway dehydration: preliminary evidence for impaired compensation to oral breathing in individuals with a history of vocal fatigue.
    Sivasankar M; Erickson E; Schneider S; Hawes A
    J Speech Lang Hear Res; 2008 Dec; 51(6):1494-506. PubMed ID: 18664688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceived phonatory effort and phonation threshold pressure across a prolonged voice loading task: a study of vocal fatigue.
    Chang A; Karnell MP
    J Voice; 2004 Dec; 18(4):454-66. PubMed ID: 15567047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laryngeal Desiccation Challenge and Nebulized Isotonic Saline in Healthy Male Singers and Nonsingers: Effects on Acoustic, Aerodynamic, and Self-Perceived Effort and Dryness Measures.
    Tanner K; Fujiki RB; Dromey C; Merrill RM; Robb W; Kendall KA; Hopkin JA; Channell RW; Sivasankar MP
    J Voice; 2016 Nov; 30(6):670-676. PubMed ID: 26412295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vocal warm-up increases phonation threshold pressure in soprano singers at high pitch.
    Motel T; Fisher KV; Leydon C
    J Voice; 2003 Jun; 17(2):160-7. PubMed ID: 12825648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Therapeutic Effects of Straw Phonation on Vocal Fatigue.
    Kang J; Xue C; Lou Z; Scholp A; Zhang Y; Jiang JJ
    Laryngoscope; 2020 Nov; 130(11):E674-E679. PubMed ID: 31971264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of vocal abuse: fluctuations in phonation time and intensity in 4 groups of speakers.
    Masuda T; Ikeda Y; Manako H; Komiyama S
    Acta Otolaryngol; 1993 Jul; 113(4):547-52. PubMed ID: 8379311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of expiratory effort on dysphonic patients on increasing vocal intensity.
    Makiyama K; Kida A; Sawashima M
    Otolaryngol Head Neck Surg; 1998 May; 118(5):723-7. PubMed ID: 9591881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the negative vocal effects of superficial laryngeal dehydration with humidification.
    Levendoski EE; Sundarrajan A; Sivasankar MP
    Ann Otol Rhinol Laryngol; 2014 Jul; 123(7):475-81. PubMed ID: 24690983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
    Titze IR; Svec JG; Popolo PS
    J Speech Lang Hear Res; 2003 Aug; 46(4):919-32. PubMed ID: 12959470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-duration accelerated breathing challenges affect phonation.
    Sivasankar M; Erickson E
    Laryngoscope; 2009 Aug; 119(8):1658-63. PubMed ID: 19522007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singers' phonation threshold pressure and ratings of self-perceived effort on vocal tasks.
    McHenry M; Evans J; Powitzky E
    J Voice; 2013 May; 27(3):295-8. PubMed ID: 23462685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of transglottal pressure on vocal fundamental frequency changes with stiffness of vocal folds].
    Tanaka K; Kitajima K; Kataoka H; Kataoka K; Tanaka H
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):1-6. PubMed ID: 9038069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T; Schwarz R; Döllinger M; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2006 Aug; 120(2):1012-27. PubMed ID: 16938988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on vocal fold collision and phonation threshold pressure of resonance tube phonation with tube end in water.
    Enflo L; Sundberg J; Romedahl C; McAllister A
    J Speech Lang Hear Res; 2013 Oct; 56(5):1530-8. PubMed ID: 23838993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothesis of whiplike motion as a possible traumatizing mechanism in vocal fold vibration.
    Sonninen A; Laukkanen AM
    Folia Phoniatr Logop; 2003; 55(4):189-98. PubMed ID: 12802091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.