BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 14701722)

  • 1. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene.
    Jung D; Hagenbuch B; Fried M; Meier PJ; Kullak-Ublick GA
    Am J Physiol Gastrointest Liver Physiol; 2004 May; 286(5):G752-61. PubMed ID: 14701722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression.
    Lee YK; Dell H; Dowhan DH; Hadzopoulou-Cladaras M; Moore DD
    Mol Cell Biol; 2000 Jan; 20(1):187-95. PubMed ID: 10594021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic activation of the human orphan nuclear receptor SHP gene promoter by basic helix-loop-helix protein E2A and orphan nuclear receptor SF-1.
    Kim HJ; Kim JY; Park YY; Choi HS
    Nucleic Acids Res; 2003 Dec; 31(23):6860-72. PubMed ID: 14627819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of pancreas and liver gene expression by HNF transcription factors.
    Odom DT; Zizlsperger N; Gordon DB; Bell GW; Rinaldi NJ; Murray HL; Volkert TL; Schreiber J; Rolfe PA; Gifford DK; Fraenkel E; Bell GI; Young RA
    Science; 2004 Feb; 303(5662):1378-81. PubMed ID: 14988562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal regulation of the early growth response 1 (Egr-1) protein expression by hepatocyte nuclear factor 4alpha (HNF4alpha) and small heterodimer partner (SHP) cross-talk in liver fibrosis.
    Zhang Y; Bonzo JA; Gonzalez FJ; Wang L
    J Biol Chem; 2011 Aug; 286(34):29635-43. PubMed ID: 21725089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of hepatocyte nuclear factor 4 and seven-up controls insect counter-defense cathepsin B expression.
    Ahn JE; Guarino LA; Zhu-Salzman K
    J Biol Chem; 2010 Feb; 285(9):6573-84. PubMed ID: 20048156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear receptor superfamily: the second decade.
    Mangelsdorf DJ; Thummel C; Beato M; Herrlich P; Schütz G; Umesono K; Blumberg B; Kastner P; Mark M; Chambon P; Evans RM
    Cell; 1995 Dec; 83(6):835-9. PubMed ID: 8521507
    [No Abstract]   [Full Text] [Related]  

  • 8. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes.
    Ni Y; Lempp FA; Mehrle S; Nkongolo S; Kaufman C; Fälth M; Stindt J; Königer C; Nassal M; Kubitz R; Sültmann H; Urban S
    Gastroenterology; 2014 Apr; 146(4):1070-83. PubMed ID: 24361467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide.
    Yan H; Peng B; Liu Y; Xu G; He W; Ren B; Jing Z; Sui J; Li W
    J Virol; 2014 Mar; 88(6):3273-84. PubMed ID: 24390325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP).
    Watashi K; Sluder A; Daito T; Matsunaga S; Ryo A; Nagamori S; Iwamoto M; Nakajima S; Tsukuda S; Borroto-Esoda K; Sugiyama M; Tanaka Y; Kanai Y; Kusuhara H; Mizokami M; Wakita T
    Hepatology; 2014 May; 59(5):1726-37. PubMed ID: 24375637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.
    Yan H; Zhong G; Xu G; He W; Jing Z; Gao Z; Huang Y; Qi Y; Peng B; Wang H; Fu L; Song M; Chen P; Gao W; Ren B; Sun Y; Cai T; Feng X; Sui J; Li W
    Elife; 2012 Nov; 1():e00049. PubMed ID: 23150796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver-enriched transcription factors and hepatocyte differentiation.
    Cereghini S
    FASEB J; 1996 Feb; 10(2):267-82. PubMed ID: 8641560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment.
    Li Y; Zhou J; Li T
    Front Mol Biosci; 2022; 9():879817. PubMed ID: 35495620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice.
    Gaillard D; Masson D; Garo E; Souidi M; Pais de Barros JP; Schoonjans K; Grober J; Besnard P; Thomas C
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calnexin Depletion by Endoplasmic Reticulum Stress During Cholestasis Inhibits the Na
    Robin MJD; Appelman MD; Vos HR; van Es RM; Paton JC; Paton AW; Burgering B; Fickert P; Heijmans J; van de Graaf SFJ
    Hepatol Commun; 2018 Dec; 2(12):1550-1566. PubMed ID: 30556041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases.
    Garcia M; Thirouard L; Sedès L; Monrose M; Holota H; Caira F; Volle DH; Beaudoin C
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30453651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses.
    Eller C; Heydmann L; Colpitts CC; Verrier ER; Schuster C; Baumert TF
    Cell Mol Life Sci; 2018 Nov; 75(21):3895-3905. PubMed ID: 30097692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064.
    Moscovitz JE; Kong B; Buckley K; Buckley B; Guo GL; Aleksunes LM
    Toxicol Appl Pharmacol; 2016 Nov; 310():60-67. PubMed ID: 27609522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of retinoic acid receptor diminishes hepatocyte permissiveness to hepatitis B virus infection through modulation of sodium taurocholate cotransporting polypeptide (NTCP) expression.
    Tsukuda S; Watashi K; Iwamoto M; Suzuki R; Aizaki H; Okada M; Sugiyama M; Kojima S; Tanaka Y; Mizokami M; Li J; Tong S; Wakita T
    J Biol Chem; 2015 Feb; 290(9):5673-84. PubMed ID: 25550158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes.
    Ding L; Pang S; Sun Y; Tian Y; Yu L; Dang N
    Int J Endocrinol; 2014; 2014():751859. PubMed ID: 24872814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.