These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14701847)

  • 1. Redesigning the folding energetics of a model three-helix bundle protein by site-directed mutagenesis.
    Lopes DH; Chapeaurouge A; Manderson GA; Johansson JS; Ferreira ST
    J Biol Chem; 2004 Mar; 279(12):10991-6. PubMed ID: 14701847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding intermediates of a model three-helix bundle protein. Pressure and cold denaturation studies.
    Chapeaurouge A; Johansson JS; Ferreira ST
    J Biol Chem; 2001 May; 276(18):14861-6. PubMed ID: 11278529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding.
    Colón W; Elöve GA; Wakem LP; Sherman F; Roder H
    Biochemistry; 1996 Apr; 35(17):5538-49. PubMed ID: 8611545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of a stable intermediate on the folding pathway of protein A.
    Bai Y; Karimi A; Dyson HJ; Wright PE
    Protein Sci; 1997 Jul; 6(7):1449-57. PubMed ID: 9232646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography.
    Chu R; Takei J; Knowlton JR; Andrykovitch M; Pei W; Kajava AV; Steinbach PJ; Ji X; Bai Y
    J Mol Biol; 2002 Oct; 323(2):253-62. PubMed ID: 12381319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A designed well-folded monomeric four-helix bundle protein prepared by Fmoc solid-phase peptide synthesis and native chemical ligation.
    Dolphin GT
    Chemistry; 2006 Feb; 12(5):1436-47. PubMed ID: 16283689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between the native-state hydrogen exchange and folding pathways of a four-helix bundle protein.
    Chu R; Pei W; Takei J; Bai Y
    Biochemistry; 2002 Jun; 41(25):7998-8003. PubMed ID: 12069590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif.
    Schubert P; Schnappinger D; Pfleiderer K; Hillen W
    Biochemistry; 2001 Mar; 40(11):3257-63. PubMed ID: 11258944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A designed four-alpha-helix bundle that binds the volatile general anesthetic halothane with high affinity.
    Johansson JS; Scharf D; Davies LA; Reddy KS; Eckenhoff RG
    Biophys J; 2000 Feb; 78(2):982-93. PubMed ID: 10653811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the B helix in early folding events in apomyoglobin: evidence from site-directed mutagenesis for native-like long range interactions.
    Nishimura C; Wright PE; Dyson HJ
    J Mol Biol; 2003 Nov; 334(2):293-307. PubMed ID: 14607120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase.
    Matthews JM; Fersht AR
    Biochemistry; 1995 May; 34(20):6805-14. PubMed ID: 7756312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing sequence dependence of folding pathway of α-helix bundle proteins through free energy landscape analysis.
    Shao Q
    J Phys Chem B; 2014 Jun; 118(22):5891-900. PubMed ID: 24837534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure versus heat-induced unfolding of ribonuclease A: the case of hydrophobic interactions within a chain-folding initiation site.
    Torrent J; Connelly JP; Coll MG; Ribó M; Lange R; Vilanova M
    Biochemistry; 1999 Nov; 38(48):15952-61. PubMed ID: 10625462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate.
    Kay MS; Ramos CH; Baldwin RL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2007-12. PubMed ID: 10051585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redesigning the hydrophobic core of a four-helix-bundle protein.
    Munson M; O'Brien R; Sturtevant JM; Regan L
    Protein Sci; 1994 Nov; 3(11):2015-22. PubMed ID: 7535612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Favourable native-like helical local interactions can accelerate protein folding.
    Viguera AR; Villegas V; Avilés FX; Serrano L
    Fold Des; 1997; 2(1):23-33. PubMed ID: 9080196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure stability of the alpha-helix structure in a de novo designed protein (alpha-l-alpha)(2) studied by FTIR spectroscopy.
    Takekiyo T; Takeda N; Isogai Y; Kato M; Taniguchi Y
    Biopolymers; 2007 Feb; 85(2):185-8. PubMed ID: 17103420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.