These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 14701916)
21. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516 [TBL] [Abstract][Full Text] [Related]
22. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Manavella PA; Arce AL; Dezar CA; Bitton F; Renou JP; Crespi M; Chan RL Plant J; 2006 Oct; 48(1):125-37. PubMed ID: 16972869 [TBL] [Abstract][Full Text] [Related]
23. Time of day shapes Arabidopsis drought transcriptomes. Wilkins O; Bräutigam K; Campbell MM Plant J; 2010 Sep; 63(5):715-27. PubMed ID: 20553421 [TBL] [Abstract][Full Text] [Related]
24. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Nakai Y; Nakahira Y; Sumida H; Takebayashi K; Nagasawa Y; Yamasaki K; Akiyama M; Ohme-Takagi M; Fujiwara S; Shiina T; Mitsuda N; Fukusaki E; Kubo Y; Sato MH Plant J; 2013 Mar; 73(5):761-75. PubMed ID: 23167462 [TBL] [Abstract][Full Text] [Related]
25. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Dai X; Xu Y; Ma Q; Xu W; Wang T; Xue Y; Chong K Plant Physiol; 2007 Apr; 143(4):1739-51. PubMed ID: 17293435 [TBL] [Abstract][Full Text] [Related]
26. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Lim SD; Lee C; Jang CS Plant Cell Environ; 2014 May; 37(5):1097-113. PubMed ID: 24215658 [TBL] [Abstract][Full Text] [Related]
27. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Ding Z; Li S; An X; Liu X; Qin H; Wang D J Genet Genomics; 2009 Jan; 36(1):17-29. PubMed ID: 19161942 [TBL] [Abstract][Full Text] [Related]
28. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Chen YH; Wu XM; Ling HQ; Yang WC Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393 [TBL] [Abstract][Full Text] [Related]
30. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249 [TBL] [Abstract][Full Text] [Related]
31. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Licausi F; van Dongen JT; Giuntoli B; Novi G; Santaniello A; Geigenberger P; Perata P Plant J; 2010 Apr; 62(2):302-15. PubMed ID: 20113439 [TBL] [Abstract][Full Text] [Related]
32. Seed production of Arabidopsis thaliana under hypobaric conditions. Goto E; Arai Y; Omasa K Biol Sci Space; 2003 Oct; 17(3):267-8. PubMed ID: 14676410 [TBL] [Abstract][Full Text] [Related]
33. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. Liu L; Wang Y; Wang N; Dong YY; Fan XD; Liu XM; Yang J; Li HY J Integr Plant Biol; 2011 Sep; 53(9):731-42. PubMed ID: 21762382 [TBL] [Abstract][Full Text] [Related]
34. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Urano K; Maruyama K; Ogata Y; Morishita Y; Takeda M; Sakurai N; Suzuki H; Saito K; Shibata D; Kobayashi M; Yamaguchi-Shinozaki K; Shinozaki K Plant J; 2009 Mar; 57(6):1065-78. PubMed ID: 19036030 [TBL] [Abstract][Full Text] [Related]
35. Ethylene reduces gas exchange and growth of lettuce plants under hypobaric and normal atmospheric conditions. He C; Davies FT; Lacey RE Physiol Plant; 2009 Mar; 135(3):258-71. PubMed ID: 19175518 [TBL] [Abstract][Full Text] [Related]
36. Spaceflight transcriptomes: unique responses to a novel environment. Paul AL; Zupanska AK; Ostrow DT; Zhang Y; Sun Y; Li JL; Shanker S; Farmerie WG; Amalfitano CE; Ferl RJ Astrobiology; 2012 Jan; 12(1):40-56. PubMed ID: 22221117 [TBL] [Abstract][Full Text] [Related]
38. Hypobaric-hypoxia induces alteration in microbes and microbes-associated enzyme profile in rat colonic samples. Maity C; Lahiri P; Adak A; Ghosh K; Pati BR; Mondal KC Biomed Environ Sci; 2013 Oct; 26(10):869-73. PubMed ID: 24215884 [TBL] [Abstract][Full Text] [Related]
39. Some phenotypic modifications in rats exposed to reduced atmospheric pressures. Clegg EJ; Harrison GA Environ Res; 1967 Nov; 1(3):231-9. PubMed ID: 5605389 [No Abstract] [Full Text] [Related]
40. The function of a continuous medication system in subatmospheric pressure environment. Hjortsø E; Jordening H; Jensen H; Munck O; Qvist J Scand J Clin Lab Invest; 1986 May; 46(3):293-5. PubMed ID: 3715381 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]