BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 14702135)

  • 21. Endogenous opiates and behavior: 2014.
    Bodnar RJ
    Peptides; 2016 Jan; 75():18-70. PubMed ID: 26551874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous Opiates and Behavior: 2015.
    Bodnar RJ
    Peptides; 2017 Feb; 88():126-188. PubMed ID: 28012859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opposite role of delta 1- and delta 2-opioid receptors activated by endogenous or exogenous opioid agonists on the endogenous cholecystokinin system: further evidence for delta-opioid receptor heterogeneity.
    Noble F; Fournie-Zaluski MC; Roques BP
    Neuroscience; 1996 Dec; 75(3):917-26. PubMed ID: 8951884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential role of cholecystokinin receptor subtypes in opioid modulation of ongoing maternal behavior.
    Miranda-Paiva CM; Felicio LF
    Pharmacol Biochem Behav; 1999 Sep; 64(1):165-9. PubMed ID: 10495012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The endogenous opioid system and clinical pain management.
    Holden JE; Jeong Y; Forrest JM
    AACN Clin Issues; 2005; 16(3):291-301. PubMed ID: 16082232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endogenous opiates and behavior: 2012.
    Bodnar RJ
    Peptides; 2013 Dec; 50():55-95. PubMed ID: 24126281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance.
    Xie JY; Herman DS; Stiller CO; Gardell LR; Ossipov MH; Lai J; Porreca F; Vanderah TW
    J Neurosci; 2005 Jan; 25(2):409-16. PubMed ID: 15647484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance.
    Gibula-Tarlowska E; Kotlinska JH
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32998249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endogenous opiates and behavior: 2013.
    Bodnar RJ
    Peptides; 2014 Dec; 62():67-136. PubMed ID: 25263178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential inhibitory/stimulatory modulation of spinal CCK release by mu and delta opioid agonists, and selective blockade of mu-dependent inhibition by kappa receptor stimulation.
    Benoliel JJ; Bourgoin S; Mauborgne A; Legrand JC; Hamon M; Cesselin F
    Neurosci Lett; 1991 Apr; 124(2):204-7. PubMed ID: 1648690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue.
    Reubi JC; Waser B; Gugger M; Friess H; Kleeff J; Kayed H; Büchler MW; Laissue JA
    Gastroenterology; 2003 Jul; 125(1):98-106. PubMed ID: 12851875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutant mice lacking the cholecystokinin2 receptor show a dopamine-dependent hyperactivity and a behavioral sensitization to morphine.
    Daugé V; Beslot F; Matsui T; Roques BP
    Neurosci Lett; 2001 Jun; 306(1-2):41-4. PubMed ID: 11403953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholecystokinin and adrenal-cortex secretion.
    Nussdorfer GG; Spinazzi R; Mazzocchi G
    Vitam Horm; 2005; 71():433-53. PubMed ID: 16112277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of mu- and kappa-, but not delta-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine.
    Shahbazian A; Heinemann A; Schmidhammer H; Beubler E; Holzer-Petsche U; Holzer P
    Br J Pharmacol; 2002 Feb; 135(3):741-50. PubMed ID: 11834622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proliferative effects of cholecystokinin in GH3 pituitary cells mediated by CCK2 receptors and potentiated by insulin.
    Smith AJ; McKernan RM
    Br J Pharmacol; 1999 Jan; 126(1):79-86. PubMed ID: 10051123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacology of CCKRs and SAR studies of peptidic analog ligands.
    Noble F
    Curr Top Med Chem; 2007; 7(12):1173-9. PubMed ID: 17584139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-.
    Zhou Y; Ru Y; Shi H; Wang Y; Wu B; Upur H; Zhang Y
    Reproduction; 2015 Oct; 150(4):257-68. PubMed ID: 26175429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular biology of opioid receptors: recent advances.
    Singh VK; Bajpai K; Biswas S; Haq W; Khan MY; Mathur KB
    Neuroimmunomodulation; 1997; 4(5-6):285-97. PubMed ID: 9650823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of cholecystokinin and opioid peptides in control of food intake.
    Baile CA; McLaughlin CL; Della-Fera MA
    Physiol Rev; 1986 Jan; 66(1):172-234. PubMed ID: 2868468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential modulation of alpha 2-adrenergic and opioid spinal antinociception by cholecystokinin and cholecystokinin antagonists in the rat dorsal horn: an electrophysiological study.
    Sullivan AF; Hewett K; Dickenson AH
    Brain Res; 1994 Oct; 662(1-2):141-7. PubMed ID: 7859067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.