BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14702403)

  • 1. Aspirin commits yeast cells to apoptosis depending on carbon source.
    Balzan R; Sapienza K; Galea DR; Vassallo N; Frey H; Bannister WH
    Microbiology (Reading); 2004 Jan; 150(Pt 1):109-115. PubMed ID: 14702403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic aspects of aspirin-induced apoptosis in yeast.
    Sapienza K; Balzan R
    FEMS Yeast Res; 2005 Dec; 5(12):1207-13. PubMed ID: 15982932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial involvement in aspirin-induced apoptosis in yeast.
    Sapienza K; Bannister W; Balzan R
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2740-2747. PubMed ID: 18757807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspirin-induced apoptosis of yeast cells is associated with mitochondrial superoxide radical accumulation and NAD(P)H oxidation.
    Farrugia G; Bannister WH; Vassallo N; Balzan R
    FEMS Yeast Res; 2013 Dec; 13(8):755-68. PubMed ID: 24028488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae.
    MacierzyƄska E; Grzelak A; Bartosz G
    Cell Mol Biol Lett; 2007 Sep; 12(3):448-56. PubMed ID: 17361365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells.
    Farrugia G; Azzopardi M; Saliba C; Grech G; Gross AS; Pistolic J; Benes V; Vassallo N; Borg J; Madeo F; Eisenberg T; Balzan R
    Sci Rep; 2019 Apr; 9(1):6152. PubMed ID: 30992471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cu,Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae.
    Barker MG; Brimage LJ; Smart KA
    FEMS Microbiol Lett; 1999 Aug; 177(2):199-204. PubMed ID: 10474184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase.
    Costa V; Reis E; Quintanilha A; Moradas-Ferreira P
    Arch Biochem Biophys; 1993 Feb; 300(2):608-14. PubMed ID: 8434941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae.
    Saffi J; Sonego L; Varela QD; Salvador M
    Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases.
    Lushchak OV; Semchyshyn HM; Lushchak VI
    Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium.
    Landolfo S; Politi H; Angelozzi D; Mannazzu I
    Biochim Biophys Acta; 2008 Jun; 1780(6):892-8. PubMed ID: 18395524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress.
    Koziol S; Zagulski M; Bilinski T; Bartosz G
    Free Radic Res; 2005 Apr; 39(4):365-71. PubMed ID: 16028362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloned prokaryotic iron superoxide dismutase protects yeast cells against oxidative stress depending on mitochondrial location.
    Balzan R; Agius DR; Bannister WH
    Biochem Biophys Res Commun; 1999 Mar; 256(1):63-7. PubMed ID: 10066423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of antioxidants on Saccharomyces cerevisiae mutants deficient in superoxide dismutases.
    Krasowska A; Dziadkowiec D; Ɓukaszewicz M; Wojtowicz K; Sigler K
    Folia Microbiol (Praha); 2003; 48(6):754-60. PubMed ID: 15058187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon.
    Blomberg A
    Yeast; 1997 May; 13(6):529-39. PubMed ID: 9178504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain.
    Soares EV; Vroman A; Mortier J; Rijsbrack K; Mota M
    J Appl Microbiol; 2004; 96(5):1117-23. PubMed ID: 15078529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of iron ions on the antioxidant enzyme activities in yeast Saccharomyces cerevisiae].
    Hospodar'ov DV; Lushchak VI
    Ukr Biokhim Zh (1999); 2004; 76(6):100-5. PubMed ID: 16350751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper supplementation increases yeast life span under conditions requiring respiratory metabolism.
    Kirchman PA; Botta G
    Mech Ageing Dev; 2007 Feb; 128(2):187-95. PubMed ID: 17129597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.