These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14702986)

  • 1. Computer simulation of the human leg subjected to impact loading.
    Xishi W; Turgut TS; Nuri A
    Proc Inst Mech Eng H; 2003; 217(6):491-501. PubMed ID: 14702986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic model of the knee and lower limb for simulating rising movements.
    Shelburne KB; Pandy MG
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):149-59. PubMed ID: 12186724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a 3-D model to predict knee joint loading during dynamic movement.
    McLean SG; Su A; van den Bogert AJ
    J Biomech Eng; 2003 Dec; 125(6):864-74. PubMed ID: 14986412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redundant nature of locomotor optimization laws.
    Collins JJ
    J Biomech; 1995 Mar; 28(3):251-67. PubMed ID: 7730385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints.
    Caruntu DI; Hefzy MS
    J Biomech Eng; 2004 Feb; 126(1):44-53. PubMed ID: 15171128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of muscle loading at the hip joint for use in pre-clinical testing.
    Heller MO; Bergmann G; Kassi JP; Claes L; Haas NP; Duda GN
    J Biomech; 2005 May; 38(5):1155-63. PubMed ID: 15797596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetabular loading in active abduction.
    Kristan A; Mavcic B; Cimerman M; Iglis A; Tonin M; Slivnik T; Kralj-Iglic V; Daniel M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):252-7. PubMed ID: 17601195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental and analytic study of the dynamic properties of the human leg.
    Moffatt CA; Harris EH; Haslam ET
    J Biomech; 1969 Oct; 2(4):373-87. PubMed ID: 16335138
    [No Abstract]   [Full Text] [Related]  

  • 9. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.
    Lu TW; O'Connor JJ
    Proc Inst Mech Eng H; 1996; 210(2):71-9. PubMed ID: 8688119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knee joint biomechanics in open-kinetic-chain flexion exercises.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):477-82. PubMed ID: 18177984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction.
    Cleather DJ; Bull AM
    Ann Biomed Eng; 2011 Jul; 39(7):1925-34. PubMed ID: 21445690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of residual force enhancement for multi-joint leg extension.
    Hahn D; Seiberl W; Schmidt S; Schweizer K; Schwirtz A
    J Biomech; 2010 May; 43(8):1503-8. PubMed ID: 20167325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation.
    Nyland JA; Shapiro R; Stine RL; Horn TS; Ireland ML
    J Orthop Sports Phys Ther; 1994 Sep; 20(3):132-7. PubMed ID: 7951289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling, simulation and optimisation of a human vertical jump.
    Spägele T; Kistner A; Gollhofer A
    J Biomech; 1999 May; 32(5):521-30. PubMed ID: 10327006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of adding trunk motion to the interpretation of the role of joint moments during normal walking.
    Patel M; Talaty M; Ounpuu S
    J Biomech; 2007; 40(16):3563-9. PubMed ID: 17765906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of the knee joint in deep flexion: a prelude to a total knee replacement that allows for maximum flexion.
    Spanu CE; Hefzy MS
    Technol Health Care; 2003; 11(3):161-81. PubMed ID: 12775934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of impact dynamics: wobbling mass model versus rigid body models.
    Gruber K; Ruder H; Denoth J; Schneider K
    J Biomech; 1998 May; 31(5):439-44. PubMed ID: 9727341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress and strain distribution in the intact canine femur: finite element analysis.
    Shahar R; Banks-Sills L; Eliasy R
    Med Eng Phys; 2003 Jun; 25(5):387-95. PubMed ID: 12711236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.