These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 14703123)

  • 1. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling.
    Rosenfeld RJ; Goodsell DS; Musah RA; Morris GM; Goodin DB; Olson AJ
    J Comput Aided Mol Des; 2003 Aug; 17(8):525-36. PubMed ID: 14703123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule binding to an artificially created cavity at the active site of cytochrome c peroxidase.
    Fitzgerald MM; Churchill MJ; McRee DE; Goodin DB
    Biochemistry; 1994 Apr; 33(13):3807-18. PubMed ID: 8142383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model binding site for testing scoring functions in molecular docking.
    Wei BQ; Baase WA; Weaver LH; Matthews BW; Shoichet BK
    J Mol Biol; 2002 Sep; 322(2):339-55. PubMed ID: 12217695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein.
    Musah RA; Jensen GM; Bunte SW; Rosenfeld RJ; Goodin DB
    J Mol Biol; 2002 Jan; 315(4):845-57. PubMed ID: 11812152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting absolute ligand binding free energies to a simple model site.
    Mobley DL; Graves AP; Chodera JD; McReynolds AC; Shoichet BK; Dill KA
    J Mol Biol; 2007 Aug; 371(4):1118-34. PubMed ID: 17599350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.
    Fitzgerald MM; Trester ML; Jensen GM; McRee DE; Goodin DB
    Protein Sci; 1995 Sep; 4(9):1844-50. PubMed ID: 8528082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of novel substrate oxidation into cytochrome c peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme.
    Musah RA; Goodin DB
    Biochemistry; 1997 Sep; 36(39):11665-74. PubMed ID: 9305956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site.
    Cappel D; Wahlström R; Brenk R; Sotriffer CA
    J Chem Inf Model; 2011 Oct; 51(10):2581-94. PubMed ID: 21916516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blind prediction of charged ligand binding affinities in a model binding site.
    Rocklin GJ; Boyce SE; Fischer M; Fish I; Mobley DL; Shoichet BK; Dill KA
    J Mol Biol; 2013 Nov; 425(22):4569-83. PubMed ID: 23896298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities.
    Frimurer TM; Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biophys J; 2003 Apr; 84(4):2273-81. PubMed ID: 12668436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using AutoDock for ligand-receptor docking.
    Morris GM; Huey R; Olson AJ
    Curr Protoc Bioinformatics; 2008 Dec; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing molecular docking in a charged model binding site.
    Brenk R; Vetter SW; Boyce SE; Goodin DB; Shoichet BK
    J Mol Biol; 2006 Apr; 357(5):1449-70. PubMed ID: 16490206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking.
    de Graaf C; Pospisil P; Pos W; Folkers G; Vermeulen NP
    J Med Chem; 2005 Apr; 48(7):2308-18. PubMed ID: 15801824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking studies on DNA intercalators.
    Gilad Y; Senderowitz H
    J Chem Inf Model; 2014 Jan; 54(1):96-107. PubMed ID: 24303988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescoring docking hit lists for model cavity sites: predictions and experimental testing.
    Graves AP; Shivakumar DM; Boyce SE; Jacobson MP; Case DA; Shoichet BK
    J Mol Biol; 2008 Mar; 377(3):914-34. PubMed ID: 18280498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing inhomogeneous solvation theory in structure-based ligand discovery.
    Balius TE; Fischer M; Stein RM; Adler TB; Nguyen CN; Cruz A; Gilson MK; Kurtzman T; Shoichet BK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6839-E6846. PubMed ID: 28760952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands.
    Marhefka CA; Moore BM; Bishop TC; Kirkovsky L; Mukherjee A; Dalton JT; Miller DD
    J Med Chem; 2001 May; 44(11):1729-40. PubMed ID: 11356108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site.
    Boyce SE; Mobley DL; Rocklin GJ; Graves AP; Dill KA; Shoichet BK
    J Mol Biol; 2009 Dec; 394(4):747-63. PubMed ID: 19782087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of multiple binding modes in ligand-protein docking.
    Källblad P; Mancera RL; Todorov NP
    J Med Chem; 2004 Jun; 47(13):3334-7. PubMed ID: 15189030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.