These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14703835)

  • 1. Significant and differential acceleration of dephosphorylation of the insecticides, paraoxon and parathion, caused by alkali metal ethoxides.
    Um IH; Jeon SE; Baek MH; Park HR
    Chem Commun (Camb); 2003 Dec; (24):3016-7. PubMed ID: 14703835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.
    Um IH; Shin YH; Lee SE; Yang K; Buncel E
    J Org Chem; 2008 Feb; 73(3):923-30. PubMed ID: 18171080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkali-metal-ion catalysis and inhibition in the nucleophilic displacement reaction of y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates with alkali-metal ethoxides: effect of changing the electrophilic center from P=O to P=S.
    Um IH; Shin YH; Park JE; Kang JS; Buncel E
    Chemistry; 2012 Jan; 18(3):961-8. PubMed ID: 22190429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paraoxon and parathion hydrolysis by aqueous molybdenocene dichloride (Cp2MoCl2): first reported pesticide hydrolysis by an organometallic complex.
    Kuo LY; Perera NM
    Inorg Chem; 2000 May; 39(10):2103-6. PubMed ID: 12526519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of the ethanolysis of aryl methyl phenyl phosphinate esters by alkali metal ions: transition state structures for uncatalyzed and metal ion-catalyzed reactions.
    Onyido I; Albright K; Buncel E
    Org Biomol Chem; 2005 Apr; 3(8):1468-75. PubMed ID: 15827643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling impact of parathion and its metabolite paraoxon on the nematode Caenorhabditis elegans in soil.
    Saffih-Hdadi K; Bruckler L; Amichot M; Belzunces L
    Environ Toxicol Chem; 2005 Jun; 24(6):1387-94. PubMed ID: 16117114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition reaction of organophosphorus nerve agents on solid surfaces with atmospheric radio frequency plasma generated gaseous species.
    Kim SH; Kim JH; Kang BK
    Langmuir; 2007 Jul; 23(15):8074-8. PubMed ID: 17579467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of sorption and biodegradation of parathion and its metabolite paraoxon in soil.
    Saffih-Hdadi K; Bruckler L; Barriuso E
    J Environ Qual; 2003; 32(6):2207-15. PubMed ID: 14674543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkali-metal ion catalysis and inhibition in SNAr displacement: relative stabilization of ground state and transition state determines catalysis and inhibition in SNAr reactivity.
    Um IH; Cho HJ; Kim MY; Buncel E
    Chemistry; 2014 Oct; 20(41):13337-44. PubMed ID: 25171659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the simulant behavior of PNPDPP toward parathion and paraoxon: a computational study.
    Khan AS; Bandyopadhyay T; Ganguly B
    J Mol Graph Model; 2012 Apr; 34():10-7. PubMed ID: 22306410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and theoretical studies on alkaline ethanolysis of 4-nitrophenyl salicylate: effect of alkali metal ions on reactivity and mechanism.
    Um IH; Seo JA; Mishima M
    Chemistry; 2011 Mar; 17(10):3021-7. PubMed ID: 21287647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double conformational transition of alkali metal poly(L-glutamate)s in aqueous ethanol: counterion mixing effect revisited.
    Hasuike M; Kuroki S; Satoh M
    Biophys Chem; 2012 May; 165-166():48-55. PubMed ID: 22464848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of ethanol and the organophosphorus insecticide parathion.
    O'Shaughnessy JA; Sultatos LG
    Biochem Pharmacol; 1995 Nov; 50(11):1925-32. PubMed ID: 8615874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H(2)O(2) treatment.
    Wu C; Linden KG
    Water Res; 2008 Dec; 42(19):4780-90. PubMed ID: 18834610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nucleophilic reactivity of hydroxamate ions in some novel micellar systems for the cleavage of parathion.
    Ghosh KK; Sinha D; Satnami ML; Dubey DK; Shrivastava A; Palepu RM; Dafonte PR
    J Colloid Interface Sci; 2006 Sep; 301(2):564-8. PubMed ID: 16797580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and kinetics of parathion degradation under ultrasonic irradiation.
    Yao JJ; Gao NY; Li C; Li L; Xu B
    J Hazard Mater; 2010 Mar; 175(1-3):138-45. PubMed ID: 19854573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis.
    Zoh KD; Kim TS; Kim JG; Choi KH
    Water Sci Technol; 2005; 52(8):45-52. PubMed ID: 16312950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Billion-fold acceleration of the methanolysis of paraoxon promoted by La(OTf)3 in methanol.
    Tsang JS; Neverov AA; Brown RS
    J Am Chem Soc; 2003 Jun; 125(25):7602-7. PubMed ID: 12812502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand exchange based paraoxon imprınted QCM sensor.
    Özkütük EB; Diltemiz SE; Özalp E; Say R; Ersöz A
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):938-42. PubMed ID: 25427509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of organophosphorus pesticides and their ozonation byproducts on gap junctional intercellular communication in rat liver cell line.
    Wu J; Lin L; Luan T; Chan Gilbert YS; Lan C
    Food Chem Toxicol; 2007 Oct; 45(10):2057-63. PubMed ID: 17601646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.