These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14703895)

  • 41. Impaired migration signaling in the hippocampus following prenatal hypoxia.
    Golan MH; Mane R; Molczadzki G; Zuckerman M; Kaplan-Louson V; Huleihel M; Perez-Polo JR
    Neuropharmacology; 2009; 57(5-6):511-22. PubMed ID: 19635490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mouse homologue of Strawberry Notch is transcriptionally regulated by Reelin signal.
    Baba K; Dekimoto H; Muraoka D; Agata K; Terashima T; Katsuyama Y
    Biochem Biophys Res Commun; 2006 Dec; 350(4):842-9. PubMed ID: 17045962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decisive role of Reelin signaling during early stages of Alzheimer's disease.
    Krstic D; Pfister S; Notter T; Knuesel I
    Neuroscience; 2013 Aug; 246():108-16. PubMed ID: 23632168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amyloid precursor protein cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neurons.
    Hoareau C; Borrell V; Soriano E; Krebs MO; Prochiantz A; Allinquant B
    Neurobiol Aging; 2008 Apr; 29(4):542-53. PubMed ID: 17169463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity.
    Yagi T; Takeichi M
    Genes Dev; 2000 May; 14(10):1169-80. PubMed ID: 10817752
    [No Abstract]   [Full Text] [Related]  

  • 46. The role of reelin gene polymorphisms in the pathogenesis of Alzheimer's disease in a Greek population.
    Antoniades D; Katopodi T; Pappa S; Lampropoulos A; Konsta V; Frydas E; Mpalogiannis S; Hatzistilianou M
    J Biol Regul Homeost Agents; 2011; 25(3):351-8. PubMed ID: 22023759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development. New hints into the biological basis of autism.
    Stokstad E
    Science; 2001 Oct; 294(5540):34-7. PubMed ID: 11588233
    [No Abstract]   [Full Text] [Related]  

  • 48. Low-density lipoprotein receptor family: endocytosis and signal transduction.
    Li Y; Cam J; Bu G
    Mol Neurobiol; 2001 Feb; 23(1):53-67. PubMed ID: 11642543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fresh look at an ancient receptor family: emerging roles for low density lipoprotein receptors in synaptic plasticity and memory formation.
    Qiu S; Korwek KM; Weeber EJ
    Neurobiol Learn Mem; 2006 Jan; 85(1):16-29. PubMed ID: 16198608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wnt signaling function in Alzheimer's disease.
    De Ferrari GV; Inestrosa NC
    Brain Res Brain Res Rev; 2000 Aug; 33(1):1-12. PubMed ID: 10967351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease.
    Reive BS; Lau V; Sánchez-Lafuente CL; Henri-Bhargava A; Kalynchuk LE; Tremblay MÈ; Caruncho HJ
    J Alzheimers Dis; 2024; 100(4):1099-1119. PubMed ID: 38995785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reeling from news that reelin defends the brain against Alzheimer's.
    Mouofo EN; Spires-Jones TL
    Cell Rep Med; 2023 Jul; 4(7):101111. PubMed ID: 37467729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Casein kinase I: from obscurity to center stage.
    Vielhaber E; Virshup DM
    IUBMB Life; 2001 Feb; 51(2):73-8. PubMed ID: 11463166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer's disease.
    Karim S; Mirza Z; Ansari SA; Rasool M; Iqbal Z; Sohrab SS; Kamal MA; Abuzenadah AM; Al-Qahtani MH
    CNS Neurol Disord Drug Targets; 2014; 13(7):1202-12. PubMed ID: 25230228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progressive signaling changes in the olfactory nerve of patients with Alzheimer's disease.
    Bathini P; Mottas A; Jaquet M; Brai E; Alberi L
    Neurobiol Aging; 2019 Apr; 76():80-95. PubMed ID: 30708185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Similarities and differences between the Wnt and reelin pathways in the forming brain.
    Reiner O; Sapir T
    Mol Neurobiol; 2005; 31(1-3):117-34. PubMed ID: 15953816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipoprotein receptors in the nervous system.
    Herz J; Bock HH
    Annu Rev Biochem; 2002; 71():405-34. PubMed ID: 12045102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer's disease?
    Caricasole A; Copani A; Caruso A; Caraci F; Iacovelli L; Sortino MA; Terstappen GC; Nicoletti F
    Trends Pharmacol Sci; 2003 May; 24(5):233-8. PubMed ID: 12767722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration.
    Koo EH; Kopan R
    Nat Med; 2004 Jul; 10 Suppl():S26-33. PubMed ID: 15272268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smooth, rough and upside-down neocortical development.
    Olson EC; Walsh CA
    Curr Opin Genet Dev; 2002 Jun; 12(3):320-7. PubMed ID: 12076676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.