These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14703992)

  • 41. The use of low concentrations of divalent cations to demonstrate a role for N-methyl-D-aspartate receptors in synaptic transmission in amphibian spinal cord.
    Smith PA
    Br J Pharmacol; 1982 Oct; 77(2):363-73. PubMed ID: 6291690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH.
    Fu CL; Maier RJ
    Appl Environ Microbiol; 1991 Dec; 57(12):3511-6. PubMed ID: 1785926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of Phe329 in binding of cationic triarylmethane dyes to human butyrylcholinesterase.
    Biberoglu K; Tacal Ö; Akbulut H
    Arch Biochem Biophys; 2011 Jul; 511(1-2):64-8. PubMed ID: 21530486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histidine modification of human serum butyrylcholinesterase.
    Cengiz D; Cokuğraş AN; Kilinç K; Tezcan EF
    Biochem Mol Med; 1997 Jun; 61(1):52-7. PubMed ID: 9232197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter.
    Jońca J; Żuk M; Wasąg B; Janaszak-Jasiecka A; Lewandowski K; Wielgomas B; Waleron K; Jasiecki J
    PLoS One; 2015; 10(10):e0139480. PubMed ID: 26444431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lack of antagonism to Ni2+ and Co2+ contact allergy from other essential divalent metal ions.
    van den Broeke LT; Nilsson JL; Scheynius A; Wahlberg JE; Karlberg AT
    Contact Dermatitis; 1998 May; 38(5):266-73. PubMed ID: 9667444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of divalent cations on bovine spermatozoal adenylate cyclase activity.
    Braun T
    J Cyclic Nucleotide Res; 1975; 1(6):271-81. PubMed ID: 1225940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulatory effect of regucalcin on (Ca(2+)-Mg2+)-ATPase in rat liver plasma membranes: comparison with the activation by Mn2+ and Co2+.
    Takahashi H; Yamaguchi M
    Mol Cell Biochem; 1993 Jul; 124(2):169-74. PubMed ID: 8232287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of dextransucrase by Zn2+, Ni2+, Co2+, and Tris(hydroxymethyl)aminomethane (Tris).
    Miller AW; Robyt JF
    Arch Biochem Biophys; 1986 Aug; 248(2):579-86. PubMed ID: 2943221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptation of a dynamic in vitro model with real-time determination of butyrylcholinesterase activity in the presence of cyclosarin and an oxime.
    Worek F; Horn G; Wille T; Thiermann H
    Toxicol In Vitro; 2015 Feb; 29(1):162-7. PubMed ID: 25450746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of divalent metal ions on the calcium pump and membrane phosphorylation in human red cells.
    Enyedi A; Sarkadi B; Nyers A; Gárdos G
    Biochim Biophys Acta; 1982 Aug; 690(1):41-9. PubMed ID: 6812632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential dephosphorylation of the insulin receptor and its 160-kDa substrate (pp160) in rat adipocytes.
    Mooney RA; Bordwell KL
    J Biol Chem; 1992 Jul; 267(20):14054-60. PubMed ID: 1321133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resistance to cadmium, cobalt, zinc, and nickel in microbes.
    Nies DH
    Plasmid; 1992 Jan; 27(1):17-28. PubMed ID: 1741458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma.
    Li B; Sedlacek M; Manoharan I; Boopathy R; Duysen EG; Masson P; Lockridge O
    Biochem Pharmacol; 2005 Nov; 70(11):1673-84. PubMed ID: 16213467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stoichiometry and dynamic interaction of metal ion activators with calcineurin phosphatase.
    Pallen CJ; Wang JH
    J Biol Chem; 1986 Dec; 261(34):16115-20. PubMed ID: 3023342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel activity of human BChE: Lipid hydrolysis.
    Gok M; Cicek C; Sari S; Bodur E
    Biochimie; 2023 Jan; 204():127-135. PubMed ID: 36126749
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Partial purification and characterization of soluble isoform of butyrylcholinesterase from rat intestine.
    Yildiz O; Bodur E; Cokuğraş AN; Ozer N
    Protein J; 2004 Feb; 23(2):143-51. PubMed ID: 15106880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-lactate reduces in vitro the inhibition of butyrylcholinesterase (BChE) by paraoxon (E 600).
    Petroianu G; Kärcher B; Kern N; Hardt F; Helfrich U; Rüfer R
    J Appl Toxicol; 1999; 19(5):329-36. PubMed ID: 10513677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ni2+-Dependent and PsaR-Mediated Regulation of the Virulence Genes pcpA, psaBCA, and prtA in Streptococcus pneumoniae.
    Manzoor I; Shafeeq S; Kuipers OP
    PLoS One; 2015; 10(11):e0142839. PubMed ID: 26562538
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative effects of cationic triarylmethane, phenoxazine and phenothiazine dyes on horse serum butyrylcholinesterase.
    Yücel YY; Tacal O; Ozer I
    Arch Biochem Biophys; 2008 Oct; 478(2):201-5. PubMed ID: 18656440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.