These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14704008)

  • 1. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part I: Experimental results and comparison with metabolic models.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):485-98. PubMed ID: 14704008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part II: Anaerobic adenosine triphosphate utilization and acetate uptake rates.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):499-511. PubMed ID: 14704009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part III: Anaerobic sources of reducing equivalents.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):512-22. PubMed ID: 14704010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs).
    Carvalheira M; Oehmen A; Carvalho G; Reis MAM
    Water Res; 2014 Nov; 64():149-159. PubMed ID: 25051162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of enhanced biological phosphorus removal washout and temperature relationships.
    Erdal UG; Erdal ZK; Randall CW
    Water Environ Res; 2006 Jul; 78(7):710-5. PubMed ID: 16929641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake.
    Welles L; Tian WD; Saad S; Abbas B; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D
    Water Res; 2015 Oct; 83():354-66. PubMed ID: 26189167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J
    J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH on enhanced biological phosphorus removal metabolisms.
    Schuler AJ; Jenkins D
    Water Sci Technol; 2002; 46(4-5):171-8. PubMed ID: 12361006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities.
    Burow LC; Mabbett AN; Blackall LL
    ISME J; 2008 Oct; 2(10):1040-51. PubMed ID: 18784756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered carbon flow by polyphosphate-accumulating organisms during enhanced biological phosphorus removal.
    Ahn CH; Park JK; Whang LM
    Water Environ Res; 2009 Feb; 81(2):184-91. PubMed ID: 19323290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the metabolic shift of polyphosphate-accumulating organisms.
    Acevedo B; BorrĂ¡s L; Oehmen A; Barat R
    Water Res; 2014 Nov; 65():235-44. PubMed ID: 25123437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal.
    Coats ER; Mockos A; Loge FJ
    Bioresour Technol; 2011 Jan; 102(2):1019-27. PubMed ID: 20970328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance.
    Erdal UG; Erdal ZK; Randall CW
    Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems.
    Ye L; Pijuan M; Yuan Z
    Bioresour Technol; 2013 Feb; 130():382-9. PubMed ID: 23313766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoate form and polyphosphate regulation: keys to biological phosphorus and glycogen transformations?
    Randall AA; Chen Y; Liu YH; McCue T
    Water Sci Technol; 2003; 47(11):227-33. PubMed ID: 12906294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age.
    Whang LM; Park JK
    Water Environ Res; 2006 Jan; 78(1):4-11. PubMed ID: 16553160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.
    Tu Y; Schuler AJ
    Environ Sci Technol; 2013 Apr; 47(8):3816-24. PubMed ID: 23477409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.