These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods. Trujillo LT; Peterson MA; Kaszniak AW; Allen JJ Clin Neurophysiol; 2005 Jan; 116(1):172-89. PubMed ID: 15589196 [TBL] [Abstract][Full Text] [Related]
8. Differential orientation effect in the neural response to interacting biological motion of two agents. Hirai M; Kakigi R BMC Neurosci; 2009 Apr; 10():39. PubMed ID: 19397815 [TBL] [Abstract][Full Text] [Related]
9. Neuromagnetic response to body motion and brain connectivity. Pavlova M; Bidet-Ildei C; Sokolov AN; Braun C; Krägeloh-Mann I J Cogn Neurosci; 2009 May; 21(5):837-46. PubMed ID: 18578605 [TBL] [Abstract][Full Text] [Related]
10. Neural responses related to point-light walker perception: a magnetoencephalographic study. Hirai M; Kaneoke Y; Nakata H; Ryusuke Kakigi Clin Neurophysiol; 2008 Dec; 119(12):2775-84. PubMed ID: 18930697 [TBL] [Abstract][Full Text] [Related]
11. Selective attention increases the dependency of cortical responses on visual motion coherence in man. Händel B; Lutzenberger W; Thier P; Haarmeier T Cereb Cortex; 2008 Dec; 18(12):2902-8. PubMed ID: 18424779 [TBL] [Abstract][Full Text] [Related]
12. Perception of animacy and direction from local biological motion signals. Chang DH; Troje NF J Vis; 2008 May; 8(5):3.1-10. PubMed ID: 18842074 [TBL] [Abstract][Full Text] [Related]
13. Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion. Amano K; Kimura T; Nishida S; Takeda T; Gomi H J Neurophysiol; 2009 Feb; 101(2):888-97. PubMed ID: 19073805 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Wang L; Kaneoke Y; Kakigi R Neurosci Res; 2003 Sep; 47(1):109-16. PubMed ID: 12941452 [TBL] [Abstract][Full Text] [Related]
15. Biological motion drives perception and action. Orban de Xivry JJ; Coppe S; Lefèvre P; Missal M J Vis; 2010 Feb; 10(2):6.1-11. PubMed ID: 20462307 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. Ahlfors SP; Simpson GV; Dale AM; Belliveau JW; Liu AK; Korvenoja A; Virtanen J; Huotilainen M; Tootell RB; Aronen HJ; Ilmoniemi RJ J Neurophysiol; 1999 Nov; 82(5):2545-55. PubMed ID: 10561425 [TBL] [Abstract][Full Text] [Related]
17. Form-from-motion: MEG evidence for time course and processing sequence. Schoenfeld MA; Woldorff M; Düzel E; Scheich H; Heinze HJ; Mangun GR J Cogn Neurosci; 2003 Feb; 15(2):157-72. PubMed ID: 12676054 [TBL] [Abstract][Full Text] [Related]
18. Multiple brain networks for visual self-recognition with different sensitivity for motion and body part. Sugiura M; Sassa Y; Jeong H; Miura N; Akitsuki Y; Horie K; Sato S; Kawashima R Neuroimage; 2006 Oct; 32(4):1905-17. PubMed ID: 16806977 [TBL] [Abstract][Full Text] [Related]
19. Direct contrasts between experimental conditions may yield more focal oscillatory activations than comparing pre- versus post-stimulus responses. Kaiser J; Rahm B; Lutzenberger W Brain Res; 2008 Oct; 1235():63-73. PubMed ID: 18602906 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of oscillatory changes associated with the perception of human motion. Virji-Babul N; Moiseev A; Sun W; Fesharaki A; Beg F; Ribary U Neuroreport; 2012 Sep; 23(13):793-8. PubMed ID: 22811057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]