These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14704217)

  • 1. Regional brain activation during concurrent implicit and explicit sequence learning.
    Aizenstein HJ; Stenger VA; Cochran J; Clark K; Johnson M; Nebes RD; Carter CS
    Cereb Cortex; 2004 Feb; 14(2):199-208. PubMed ID: 14704217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study.
    Honda M; Deiber MP; Ibáñez V; Pascual-Leone A; Zhuang P; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2159-73. PubMed ID: 9827775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontal and striatal activation during sequence learning in geriatric depression.
    Aizenstein HJ; Butters MA; Figurski JL; Stenger VA; Reynolds CF; Carter CS
    Biol Psychiatry; 2005 Aug; 58(4):290-6. PubMed ID: 16018981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults.
    Thomas KM; Hunt RH; Vizueta N; Sommer T; Durston S; Yang Y; Worden MS
    J Cogn Neurosci; 2004 Oct; 16(8):1339-51. PubMed ID: 15509382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain networks of explicit and implicit learning.
    Yang J; Li P
    PLoS One; 2012; 7(8):e42993. PubMed ID: 22952624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural correlates of implicit and explicit sequence learning: Interacting networks revealed by the process dissociation procedure.
    Destrebecqz A; Peigneux P; Laureys S; Degueldre C; Del Fiore G; Aerts J; Luxen A; Van Der Linden M; Cleeremans A; Maquet P
    Learn Mem; 2005; 12(5):480-90. PubMed ID: 16166397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning.
    Aizenstein HJ; Butters MA; Clark KA; Figurski JL; Andrew Stenger V; Nebes RD; Reynolds CF; Carter CS
    Neurobiol Aging; 2006 May; 27(5):741-51. PubMed ID: 15935517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary category learning systems identified using event-related functional MRI.
    Aizenstein HJ; MacDonald AW; Stenger VA; Nebes RD; Larson JK; Ursu S; Carter CS
    J Cogn Neurosci; 2000 Nov; 12(6):977-87. PubMed ID: 11177418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A positive influence of basal ganglia iron concentration on implicit sequence learning.
    Persson J; Garzón B; Sitnikov R; Bäckman L; Kalpouzos G
    Brain Struct Funct; 2020 Mar; 225(2):735-749. PubMed ID: 32055981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial reaction time performance following right parietal lobe damage.
    Berryhill ME; Mazuz YS; Olson IR
    J Neuropsychol; 2008 Sep; 2(Pt 2):509-14. PubMed ID: 19079745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separable neural mechanisms contribute to feedback processing in a rule-learning task.
    Zanolie K; Van Leijenhorst L; Rombouts SA; Crone EA
    Neuropsychologia; 2008 Jan; 46(1):117-26. PubMed ID: 17900633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task.
    Brázdil M; Mikl M; Marecek R; Krupa P; Rektor I
    Neuroimage; 2007 Apr; 35(2):827-35. PubMed ID: 17258910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal lesions impair the implicit and explicit learning of sequences on visuomotor tasks.
    Gomez Beldarrain M; Grafman J; Ruiz de Velasco I; Pascual-Leone A; Garcia-Monco C
    Exp Brain Res; 2002 Feb; 142(4):529-38. PubMed ID: 11845248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging.
    Rauch SL; Whalen PJ; Savage CR; Curran T; Kendrick A; Brown HD; Bush G; Breiter HC; Rosen BR
    Hum Brain Mapp; 1997; 5(2):124-32. PubMed ID: 10096417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociating explicit and implicit category knowledge with fMRI.
    Reber PJ; Gitelman DR; Parrish TB; Mesulam MM
    J Cogn Neurosci; 2003 May; 15(4):574-83. PubMed ID: 12803968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of parallel implicit and explicit information processing in patients with obsessive-compulsive disorder.
    Deckersbach T; Savage CR; Curran T; Bohne A; Wilhelm S; Baer L; Jenike MA; Rauch SL
    Am J Psychiatry; 2002 Oct; 159(10):1780-2. PubMed ID: 12359688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.