These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 14704427)
1. A previously unknown maltose transporter essential for starch degradation in leaves. Niittylä T; Messerli G; Trevisan M; Chen J; Smith AM; Zeeman SC Science; 2004 Jan; 303(5654):87-9. PubMed ID: 14704427 [TBL] [Abstract][Full Text] [Related]
2. A maltose transporter from apple is expressed in source and sink tissues and complements the Arabidopsis maltose export-defective mutant. Reidel EJ; Turgeon R; Cheng L Plant Cell Physiol; 2008 Oct; 49(10):1607-13. PubMed ID: 18776201 [TBL] [Abstract][Full Text] [Related]
3. Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. Cho MH; Lim H; Shin DH; Jeon JS; Bhoo SH; Park YI; Hahn TR New Phytol; 2011 Apr; 190(1):101-112. PubMed ID: 21175634 [TBL] [Abstract][Full Text] [Related]
4. Mutagenesis of cysteine 81 prevents dimerization of the APS1 subunit of ADP-glucose pyrophosphorylase and alters diurnal starch turnover in Arabidopsis thaliana leaves. Hädrich N; Hendriks JH; Kötting O; Arrivault S; Feil R; Zeeman SC; Gibon Y; Schulze WX; Stitt M; Lunn JE Plant J; 2012 Apr; 70(2):231-42. PubMed ID: 22098298 [TBL] [Abstract][Full Text] [Related]
6. A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG). Fettke J; Chia T; Eckermann N; Smith A; Steup M Plant J; 2006 May; 46(4):668-84. PubMed ID: 16640603 [TBL] [Abstract][Full Text] [Related]
7. [New look at starch degradation in Arabidopsis thaliana L. chloroplasts]. Samojedny D; Orzechowski S Postepy Biochem; 2007; 53(1):74-83. PubMed ID: 17718391 [TBL] [Abstract][Full Text] [Related]
8. Leaf starch degradation comes out of the shadows. Lloyd JR; Kossmann J; Ritte G Trends Plant Sci; 2005 Mar; 10(3):130-7. PubMed ID: 15749471 [TBL] [Abstract][Full Text] [Related]
9. A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated alpha-glucans and is involved in starch degradation in Arabidopsis. Baunsgaard L; Lütken H; Mikkelsen R; Glaring MA; Pham TT; Blennow A Plant J; 2005 Feb; 41(4):595-605. PubMed ID: 15686522 [TBL] [Abstract][Full Text] [Related]
10. Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Stettler M; Eicke S; Mettler T; Messerli G; Hörtensteiner S; Zeeman SC Mol Plant; 2009 Nov; 2(6):1233-46. PubMed ID: 19946617 [TBL] [Abstract][Full Text] [Related]
11. The monosaccharide transporter(-like) gene family in Arabidopsis. Büttner M FEBS Lett; 2007 May; 581(12):2318-24. PubMed ID: 17379213 [TBL] [Abstract][Full Text] [Related]
12. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Li L; Foster CM; Gan Q; Nettleton D; James MG; Myers AM; Wurtele ES Plant J; 2009 May; 58(3):485-98. PubMed ID: 19154206 [TBL] [Abstract][Full Text] [Related]
13. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Rausch C; Zimmermann P; Amrhein N; Bucher M Plant J; 2004 Jul; 39(1):13-28. PubMed ID: 15200639 [TBL] [Abstract][Full Text] [Related]
14. Impaired sucrose induction1 encodes a conserved plant-specific protein that couples carbohydrate availability to gene expression and plant growth. Rook F; Corke F; Baier M; Holman R; May AG; Bevan MW Plant J; 2006 Jun; 46(6):1045-58. PubMed ID: 16805736 [TBL] [Abstract][Full Text] [Related]
15. A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Kerk D; Conley TR; Rodriguez FA; Tran HT; Nimick M; Muench DG; Moorhead GB Plant J; 2006 May; 46(3):400-13. PubMed ID: 16623901 [TBL] [Abstract][Full Text] [Related]
16. Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. Yoder DW; Kadirjan-Kalbach D; Olson BJ; Miyagishima SY; Deblasio SL; Hangarter RP; Osteryoung KW Plant Cell Physiol; 2007 Jun; 48(6):775-91. PubMed ID: 17468127 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Poschet G; Hannich B; Büttner M Plant Cell Physiol; 2010 Sep; 51(9):1571-80. PubMed ID: 20627950 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Kirchberger S; Tjaden J; Neuhaus HE Plant J; 2008 Oct; 56(1):51-63. PubMed ID: 18564385 [TBL] [Abstract][Full Text] [Related]
19. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Dräger DB; Desbrosses-Fonrouge AG; Krach C; Chardonnens AN; Meyer RC; Saumitou-Laprade P; Krämer U Plant J; 2004 Aug; 39(3):425-39. PubMed ID: 15255871 [TBL] [Abstract][Full Text] [Related]
20. A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Chia T; Thorneycroft D; Chapple A; Messerli G; Chen J; Zeeman SC; Smith SM; Smith AM Plant J; 2004 Mar; 37(6):853-63. PubMed ID: 14996213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]