BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 14704982)

  • 1. Tissue adhesiveness and host response of in situ photopolymerizable interpenetrating networks containing methylprednisolone acetate.
    Zilinski JL; Kao WJ
    J Biomed Mater Res A; 2004 Feb; 68(2):392-400. PubMed ID: 14704982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Martinez-Diaz GJ; Kao WJ
    J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell interaction with protein-loaded interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Stevens KR; Kao WJ
    Biomaterials; 2003 Oct; 24(22):3921-30. PubMed ID: 12834587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Either integrin subunit beta1 or beta3 is involved in mediating monocyte adhesion, IL-1beta protein and mRNA expression in response to surfaces functionalized with fibronectin-derived peptides.
    Chung AS; Gao Q; Kao WJ
    J Biomater Sci Polym Ed; 2007; 18(6):713-29. PubMed ID: 17623553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpenetrating polymer networks containing gelatin modified with PEGylated RGD and soluble KGF: synthesis, characterization, and application in in vivo critical dermal wound.
    Waldeck H; Chung AS; Kao WJ
    J Biomed Mater Res A; 2007 Sep; 82(4):861-71. PubMed ID: 17335014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of poly(ethylene glycol)-diacrylate macromer polymerization within a multicomponent semi-interpenetrating polymer network system.
    Witte RP; Blake AJ; Palmer C; Kao WJ
    J Biomed Mater Res A; 2004 Dec; 71(3):508-18. PubMed ID: 15386483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks.
    Yin L; Fei L; Cui F; Tang C; Yin C
    Biomaterials; 2007 Feb; 28(6):1258-66. PubMed ID: 17118443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage adhesion on gelatin-based interpenetrating networks grafted with PEGylated RGD.
    Phillips JM; Kao WJ
    Tissue Eng; 2005; 11(5-6):964-73. PubMed ID: 15998235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate).
    Kong X; Narine SS
    Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile creep properties of interpenetrating networks containing gelatin and poly(ethylene glycol) diacrylate.
    Toth M; Williams K; Hayes S; Kao WJ
    J Biomater Sci Polym Ed; 2005; 16(7):925-32. PubMed ID: 16128297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition.
    Witte RP; Kao WJ
    Biomaterials; 2005 Jun; 26(17):3673-82. PubMed ID: 15621258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulus-dependent macrophage adhesion and behavior.
    Irwin EF; Saha K; Rosenbluth M; Gamble LJ; Castner DG; Healy KE
    J Biomater Sci Polym Ed; 2008; 19(10):1363-82. PubMed ID: 18854128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.
    Liu L; Sheardown H
    Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance.
    Chang Y; Chen S; Yu Q; Zhang Z; Bernards M; Jiang S
    Biomacromolecules; 2007 Jan; 8(1):122-7. PubMed ID: 17206797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control.
    Reddy TT; Kano A; Maruyama A; Hadano M; Takahara A
    Biomacromolecules; 2008 Apr; 9(4):1313-21. PubMed ID: 18355026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release.
    Liu YY; Lü J; Shao YH
    Macromol Biosci; 2006 Jun; 6(6):452-8. PubMed ID: 16761277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.