These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 14705000)

  • 21. Higher expression of Fab antibody fragments in a CHO cell line at reduced temperature.
    Schatz SM; Kerschbaumer RJ; Gerstenbauer G; Kral M; Dorner F; Scheiflinger F
    Biotechnol Bioeng; 2003 Nov; 84(4):433-8. PubMed ID: 14574700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CHO cells adapted to hypothermic growth produce high yields of recombinant beta-interferon.
    Sunley K; Tharmalingam T; Butler M
    Biotechnol Prog; 2008; 24(4):898-906. PubMed ID: 19194899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells.
    Ahn WS; Jeon JJ; Jeong YR; Lee SJ; Yoon SK
    Biotechnol Bioeng; 2008 Dec; 101(6):1234-44. PubMed ID: 18980186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heuristic optimization of antibody production by Chinese hamster ovary cells.
    Sandadi S; Ensari S; Kearns B
    Biotechnol Prog; 2005; 21(5):1537-42. PubMed ID: 16209559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture.
    Chen ZL; Wu BC; Liu H; Liu XM; Huang PT
    J Biosci Bioeng; 2004; 97(4):239-43. PubMed ID: 16233622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality.
    Bollati-FogolĂ­n M; Forno G; Nimtz M; Conradt HS; Etcheverrigaray M; Kratje R
    Biotechnol Prog; 2005; 21(1):17-21. PubMed ID: 15903236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in optimal pH and temperature for cell growth and antibody production between two Chinese hamster ovary clones derived from the same parental clone.
    Kim HS; Lee GM
    J Microbiol Biotechnol; 2007 May; 17(5):712-20. PubMed ID: 18051290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of heterologous protein productivity by controlling postinduction specific growth rate in recombinant Escherichia coli under control of the PL promoter.
    Lim HK; Jung KH
    Biotechnol Prog; 1998; 14(4):548-53. PubMed ID: 9694674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor.
    Lipscomb ML; Mowry MC; Kompala DS
    Biotechnol Prog; 2004; 20(5):1402-7. PubMed ID: 15458323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving performance of mammalian cells in fed-batch processes through "bioreactor evolution".
    Prentice HL; Ehrenfels BN; Sisk WP
    Biotechnol Prog; 2007; 23(2):458-64. PubMed ID: 17311405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling retrovirus production for gene therapy. 1. Determination Of optimal bioreaction mode and harvest strategy.
    Cruz PE; Almeida JS; Murphy PN; Moreira JL; Carrondo MJ
    Biotechnol Prog; 2000; 16(2):213-21. PubMed ID: 10753446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of a mathematical model and Differential Evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7.
    Moonchai S; Madlhoo W; Jariyachavalit K; Shimizu H; Shioya S; Chauvatcharin S
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):15-26. PubMed ID: 16047169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7.
    Barron N; Kumar N; Sanchez N; Doolan P; Clarke C; Meleady P; O'Sullivan F; Clynes M
    J Biotechnol; 2011 Jan; 151(2):204-11. PubMed ID: 21167223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature control of growth and productivity in mutant Chinese hamster ovary cells synthesizing a recombinant protein.
    Jenkins N; Hovey A
    Biotechnol Bioeng; 1993 Nov; 42(9):1029-36. PubMed ID: 18613230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein.
    Senger RS; Karim MN
    Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Productivity improvement of recombinant Escherichia coli fermentation via robust optimization.
    Kavanagh JM; Barton GW
    Bioprocess Biosyst Eng; 2008 Feb; 31(2):137-43. PubMed ID: 17717709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells.
    Gammell P; Barron N; Kumar N; Clynes M
    J Biotechnol; 2007 Jun; 130(3):213-8. PubMed ID: 17570552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of culture temperature and pH on flag-tagged COMP angiopoietin-1 (FCA1) production from recombinant CHO cells: FCA1 aggregation.
    Hwang SJ; Yoon SK; Koh GY; Lee GM
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):305-15. PubMed ID: 21509567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependence on glucose limitation of the pCO2 influences on CHO cell growth, metabolism and IgG production.
    Takuma S; Hirashima C; Piret JM
    Biotechnol Bioeng; 2007 Aug; 97(6):1479-88. PubMed ID: 17318909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells.
    Galbraith DJ; Tait AS; Racher AJ; Birch JR; James DC
    Biotechnol Prog; 2006; 22(3):753-62. PubMed ID: 16739959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.