These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14705143)

  • 1. Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus.
    Takeda A; Minami A; Seki Y; Oku N
    J Neurosci Res; 2004 Jan; 75(2):225-229. PubMed ID: 14705143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated stimulation of glutamate and GABA release in the rat striatum in vivo: a dual-label microdialysis study.
    Patel DR; Young AM; Croucher MJ
    Neuroscience; 2001; 102(1):101-11. PubMed ID: 11226673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms.
    Satake S; Saitow F; Rusakov D; Konishi S
    Eur J Neurosci; 2004 May; 19(9):2464-74. PubMed ID: 15128400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via non-NMDA receptors in cultured rat hippocampal neurons.
    Vignes M
    Neuropharmacology; 2001 May; 40(6):737-48. PubMed ID: 11369028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between zinc and neurotransmitters released into the amygdalar extracellular space.
    Minami A; Takeda A; Yamaide R; Oku N
    Brain Res; 2002 May; 936(1-2):91-4. PubMed ID: 11988235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus.
    Takeda A; Sakurada N; Ando M; Kanno S; Oku N
    Neurochem Int; 2009 Nov; 55(6):376-82. PubMed ID: 19393273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling.
    Baldelli P; Novara M; Carabelli V; Hernández-Guijo JM; Carbone E
    Eur J Neurosci; 2002 Dec; 16(12):2297-310. PubMed ID: 12492424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic transmission and synchronous activity is disrupted in hippocampal slices taken from aged TAS10 mice.
    Brown JT; Richardson JC; Collingridge GL; Randall AD; Davies CH
    Hippocampus; 2005; 15(1):110-7. PubMed ID: 15390159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA and AMPA/kainate glutamatergic agonists increase the extracellular concentrations of GABA in the prefrontal cortex of the freely moving rat: modulation by endogenous dopamine.
    Del Arco A; Mora F
    Brain Res Bull; 2002 Mar; 57(5):623-30. PubMed ID: 11927365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms.
    Xue JG; Masuoka T; Gong XD; Chen KS; Yanagawa Y; Law SK; Konishi S
    J Neurophysiol; 2011 Jun; 105(6):2897-906. PubMed ID: 21471392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide Y release from cultured hippocampal neurons: stimulation by glutamate acting at N-methyl-D-aspartate and AMPA receptors.
    Gemignani A; Marchese S; Fontana G; Raiteri M
    Neuroscience; 1997 Nov; 81(1):23-31. PubMed ID: 9300398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.
    Nissen W; Szabo A; Somogyi J; Somogyi P; Lamsa KP
    J Neurosci; 2010 Jan; 30(4):1337-47. PubMed ID: 20107060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A presynaptic N-methyl-D-aspartate autoreceptor in rat hippocampus modulating amino acid release from a cytoplasmic pool.
    Breukel AI; Besselsen E; Lopes da Silva FH; Ghijsen WE
    Eur J Neurosci; 1998 Jan; 10(1):106-14. PubMed ID: 9753118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons.
    Cossart R; Epsztein J; Tyzio R; Becq H; Hirsch J; Ben-Ari Y; Crépel V
    Neuron; 2002 Jul; 35(1):147-59. PubMed ID: 12123615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of amino acids by zinc in the hippocampus.
    Takeda A; Minami A; Seki Y; Nakajima S; Oku N
    Brain Res Bull; 2004 Apr; 63(3):253-7. PubMed ID: 15145144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release.
    Lauri SE; Vesikansa A; Segerstråle M; Collingridge GL; Isaac JT; Taira T
    Neuron; 2006 May; 50(3):415-29. PubMed ID: 16675396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.
    Takeda A; Fuke S; Tsutsumi W; Oku N
    J Neurosci Res; 2007 Dec; 85(16):3666-72. PubMed ID: 17680671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic NMDA receptors mediate IPSC potentiation at GABAergic synapses in developing rat neocortex.
    Mathew SS; Hablitz JJ
    PLoS One; 2011 Feb; 6(2):e17311. PubMed ID: 21365001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.