These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 14705198)

  • 1. An alternative approach based on artificial neural networks to study controlled drug release.
    Reis MA; Sinisterra RD; Belchior JC
    J Pharm Sci; 2004 Feb; 93(2):418-30. PubMed ID: 14705198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.
    Petrović J; Ibrić S; Betz G; Đurić Z
    Int J Pharm; 2012 May; 428(1-2):57-67. PubMed ID: 22402474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dexamethasone-releasing cochlear implant coatings: application of artificial neural networks for modelling of formulation parameters and drug release profile.
    Nemati P; Imani M; Farahmandghavi F; Mirzadeh H; Marzban-Rad E; Nasrabadi AM
    J Pharm Pharmacol; 2013 Aug; 65(8):1145-57. PubMed ID: 23837582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the partition coefficients using QSPR modeling and simulation of paclitaxel release from the diffusion-controlled drug delivery devices.
    Pramanik A; Garg S
    Drug Deliv Transl Res; 2018 Oct; 8(5):1300-1312. PubMed ID: 29700777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Optimize the preparation process of Erigeron breviscapus sustained-release pellets based on artificial neural network and particle swarm optimization algorithm].
    Zhang JX; Chen YZ; Wu ZN; Liao WR
    Zhong Yao Cai; 2012 Jan; 35(1):127-33. PubMed ID: 22734423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.
    Chansanroj K; Petrović J; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):321-31. PubMed ID: 21878388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized RLS approach to the training of neural networks.
    Xu Y; Wong KW; Leung CS
    IEEE Trans Neural Netw; 2006 Jan; 17(1):19-34. PubMed ID: 16526473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets.
    Leane MM; Cumming I; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E26. PubMed ID: 12916908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of diffusion coefficient from mucoadhesive barrier devices using artificial neural networks.
    Lee Y; Khemka A; Yoo JW; Lee CH
    Int J Pharm; 2008 Mar; 351(1-2):119-26. PubMed ID: 17981411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural networks for bilateral prediction of formulation parameters and drug release profiles from cochlear implant coatings fabricated as porous monolithic devices based on silicone rubber.
    Nemati P; Imani M; Farahmandghavi F; Mirzadeh H; Marzban-Rad E; Nasrabadi AM
    J Pharm Pharmacol; 2014 May; 66(5):624-38. PubMed ID: 24341981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An on-line modified least-mean-square algorithm for training neurofuzzy controllers.
    Tan WW
    ISA Trans; 2007 Apr; 46(2):181-8. PubMed ID: 17337268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new RBF neural network with boundary value constraints.
    Hong X; Chen S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):298-303. PubMed ID: 19068436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An H(∞) control approach to robust learning of feedforward neural networks.
    Jing X
    Neural Netw; 2011 Sep; 24(7):759-66. PubMed ID: 21458228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Least Square Fast Learning Network for modeling the combustion efficiency of a 300WM coal-fired boiler.
    Li G; Niu P; Wang H; Liu Y
    Neural Netw; 2014 Mar; 51():57-66. PubMed ID: 24373896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-sensor optimal H∞ fusion filters for delayed nonlinear intelligent systems based on a unified model.
    Liu M; Zhang S; Jin Y
    Neural Netw; 2011 Apr; 24(3):280-90. PubMed ID: 21167678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix.
    Burgos AE; Belchior JC; Sinisterra RD
    Biomaterials; 2002 Jun; 23(12):2519-26. PubMed ID: 12033599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive computation algorithm for RBF neural network.
    Han HG; Qiao JF
    IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):342-7. PubMed ID: 24808512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of drug release profiles using an intelligent learning system: an experimental study in transdermal iontophoresis.
    Lim CP; Quek SS; Peh KK
    J Pharm Biomed Anal; 2003 Feb; 31(1):159-68. PubMed ID: 12560060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning.
    Yuan XT; Yan S
    Neural Comput; 2012 Apr; 24(4):1047-84. PubMed ID: 22091666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.