BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 14705940)

  • 1. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of antifreeze proteins.
    Davies PL; Baardsnes J; Kuiper MJ; Walker VK
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):927-35. PubMed ID: 12171656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL
    Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in fish antifreeze protein research].
    Zhong QW; Fan TJ
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Mar; 34(2):124-30. PubMed ID: 12007008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.