These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 14706252)

  • 21. A Multi-variate Mathematical Model for Simulating the Granule Size Distribution in Roller Compaction-Milling Process.
    Amini H; Akseli I
    AAPS PharmSciTech; 2021 Mar; 22(3):97. PubMed ID: 33694033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of roller compaction by combination of a compaction simulator and oscillating mill - A material sparing approach.
    Hassan L; Jensen R; Megarry A; Blaabjerg LI
    Int J Pharm; 2023 Sep; 644():123281. PubMed ID: 37524254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modified mechanistic approach for predicting ribbon solid fraction at different roller compaction speeds.
    Li J; Tseng YC; Paul S
    Int J Pharm; 2024 Jul; 660():124366. PubMed ID: 38901541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of screw-to-roll speed ratio on ribbon porosity during roll compaction.
    Olaleye B; Wu CY; Liu LX
    Int J Pharm; 2020 Oct; 588():119770. PubMed ID: 32805384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets.
    Weyenberg W; Vermeire A; Vandervoort J; Remon JP; Ludwig A
    Eur J Pharm Biopharm; 2005 Apr; 59(3):527-36. PubMed ID: 15760734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implementation of an online thermal imaging to study the effect of process parameters of roller compactor.
    Omar CS; Hounslow MJ; Salman AD
    Drug Deliv Transl Res; 2018 Dec; 8(6):1604-1614. PubMed ID: 29441467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematical approach of formulation and process development using roller compaction.
    Teng Y; Qiu Z; Wen H
    Eur J Pharm Biopharm; 2009 Oct; 73(2):219-29. PubMed ID: 19406236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roller compaction: Ribbon splitting and sticking.
    Mahmah O; Adams MJ; Omar CS; Gururajan B; Salman AD
    Int J Pharm; 2019 Mar; 559():156-172. PubMed ID: 30682449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dimensionless variable for the scale up and transfer of a roller compaction formulation.
    Boersen N; Belair D; Peck GE; Pinal R
    Drug Dev Ind Pharm; 2016 Jan; 42(1):60-69. PubMed ID: 25853293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the variability of NIR in-line monitoring of roller compaction process by using Fast Fourier Transform (FFT) analysis.
    Feng T; Wang F; Pinal R; Wassgren C; Carvajal MT
    AAPS PharmSciTech; 2008; 9(2):419-24. PubMed ID: 18431668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a Material Library to Understand the Impacts of Raw Material Properties on Ribbon Quality in Roll Compaction.
    Yu J; Xu B; Zhang K; Shi C; Zhang Z; Fu J; Qiao Y
    Pharmaceutics; 2019 Dec; 11(12):. PubMed ID: 31817930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A prediction model for monitoring ribbed roller compacted ribbons.
    Quyet PV; Samanta AK; Liew CV; Chan LW; Heng PW
    J Pharm Sci; 2013 Aug; 102(8):2667-78. PubMed ID: 23744608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple compaction of microcrystalline cellulose in a roller compactor.
    Bultmann JM
    Eur J Pharm Biopharm; 2002 Jul; 54(1):59-64. PubMed ID: 12084503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of excipient particle size on the reduction of compactibility after roller compaction.
    Janssen PHM; Jaspers M; Meier R; Roelofs TP; Dickhoff BHJ
    Int J Pharm X; 2022 Dec; 4():100117. PubMed ID: 35496756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elastic recovery in roll compaction simulation.
    Keizer HL; Kleinebudde P
    Int J Pharm; 2020 Jan; 573():118810. PubMed ID: 31678522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data.
    Crowley ME; Hegarty A; McAuliffe MAP; O'Mahony GE; Kiernan L; Hayes K; Crean AM
    Eur J Pharm Sci; 2017 May; 102():103-114. PubMed ID: 28216342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.