BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 14706261)

  • 1. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion.
    Crowley MM; Schroeder B; Fredersdorf A; Obara S; Talarico M; Kucera S; McGinity JW
    Int J Pharm; 2004 Jan; 269(2):509-22. PubMed ID: 14706261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate).
    Zhang F; McGinity JW
    Drug Dev Ind Pharm; 2000 Sep; 26(9):931-42. PubMed ID: 10914317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets.
    Grund J; Koerber M; Walther M; Bodmeier R
    Int J Pharm; 2014 Jul; 469(1):94-101. PubMed ID: 24746409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal growth formation in melt extrudates.
    Bruce C; Fegely KA; Rajabi-Siahboomi AR; McGinity JW
    Int J Pharm; 2007 Aug; 341(1-2):162-72. PubMed ID: 17524578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties of film-coated melt-extruded pellets.
    Young CR; Crowley M; Dietzsch C; McGinity JW
    J Microencapsul; 2007 Feb; 24(1):57-71. PubMed ID: 17438942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate.
    Zhu Y; Shah NH; Malick AW; Infeld MH; McGinity JW
    Int J Pharm; 2002 Jul; 241(2):301-10. PubMed ID: 12100857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression of controlled-release pellets produced by a hot-melt extrusion and spheronization process.
    Young CR; Dietzsch C; McGinity JW
    Pharm Dev Technol; 2005; 10(1):133-9. PubMed ID: 15776821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lipid and cellulose based matrix former on the release of highly soluble drug from extruded/spheronized, sintered and compacted pellets.
    Maboos M; Yousuf RI; Shoaib MH; Nasiri I; Hussain T; Ahmed HF; Iffat W
    Lipids Health Dis; 2018 Jun; 17(1):136. PubMed ID: 29885655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process.
    Patil H; Tiwari RV; Upadhye SB; Vladyka RS; Repka MA
    Int J Pharm; 2015 Dec; 496(1):33-41. PubMed ID: 25863118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.
    Avgerinos T; Kantiranis N; Panagopoulou A; Malamataris S; Kachrimanis K; Nikolakakis I
    Drug Dev Ind Pharm; 2018 Feb; 44(2):338-348. PubMed ID: 29023145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.
    Zhang J; Feng X; Patil H; Tiwari RV; Repka MA
    Int J Pharm; 2017 Mar; 519(1-2):186-197. PubMed ID: 28017768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion.
    Liu J; Zhang F; McGinity JW
    Eur J Pharm Biopharm; 2001 Sep; 52(2):181-90. PubMed ID: 11522484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets.
    Schilling SU; Bruce CD; Shah NH; Malick AW; McGinity JW
    Int J Pharm; 2008 Sep; 361(1-2):158-68. PubMed ID: 18582547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release.
    Yang Y; Wang H; Li H; Ou Z; Yang G
    Eur J Pharm Sci; 2018 Mar; 115():11-18. PubMed ID: 29305984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and evaluation of verapamil hydrochloride microcapsules.
    Mukherjee B; Mahanti B; Panda P; Mahapatra S
    Am J Ther; 2005; 12(5):417-24. PubMed ID: 16148427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.
    Khaled SA; Burley JC; Alexander MR; Roberts CJ
    Int J Pharm; 2014 Jan; 461(1-2):105-11. PubMed ID: 24280018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.
    Villanova JC; Ayres E; Carvalho SM; Patrício PS; Pereira FV; Oréfice RL
    Eur J Pharm Sci; 2011 Mar; 42(4):406-15. PubMed ID: 21241802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The manufacture and characterisation of hot-melt extruded enteric tablets.
    Andrews GP; Jones DS; Diak OA; McCoy CP; Watts AB; McGinity JW
    Eur J Pharm Biopharm; 2008 May; 69(1):264-73. PubMed ID: 18164604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovative matrix controlling drug delivery produced by thermal treatment of DC tablets containing polycarbophil and ethylcellulose.
    Caviglioli G; Baldassari S; Cirrincione P; Russo E; Parodi B; Gatti P; Drava G
    Int J Pharm; 2013 Dec; 458(1):74-82. PubMed ID: 24144954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets.
    Quinten T; De Beer T; Vervaet C; Remon JP
    Eur J Pharm Biopharm; 2009 Jan; 71(1):145-54. PubMed ID: 18511248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.