These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14706321)

  • 1. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration.
    Baroud G; Falk R; Crookshank M; Sponagel S; Steffen T
    J Biomech; 2004 Feb; 37(2):189-96. PubMed ID: 14706321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to determine the permeability for cement infiltration of osteoporotic cancellous bone.
    Baroud G; Wu JZ; Bohner M; Sponagel S; Steffen T
    Med Eng Phys; 2003 May; 25(4):283-8. PubMed ID: 12649012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation.
    Baroud G; Nemes J; Ferguson SJ; Steffen T
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):133-9. PubMed ID: 12745427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate.
    Loeffel M; Ferguson SJ; Nolte LP; Kowal JH
    Spine (Phila Pa 1976); 2008 May; 33(12):1352-9. PubMed ID: 18496348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure.
    Bohner M; Gasser B; Baroud G; Heini P
    Biomaterials; 2003 Jul; 24(16):2721-30. PubMed ID: 12711518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modelling of polymethylmethacrylate flow through cancellous bone.
    Beaudoin AJ; Mihalko WM; Krause WR
    J Biomech; 1991; 24(2):127-36. PubMed ID: 2037612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical characteristics of cement/gelatin mixture for prevention of cement leakage in vertebral augmentation.
    Meng B; Qian M; Xia SX; Yang HL; Luo ZP
    Eur Spine J; 2013 Oct; 22(10):2249-55. PubMed ID: 23832385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphasic modelling of bone-cement injection into vertebral cancellous bone.
    Bleiler C; Wagner A; Stadelmann VA; Windolf M; Köstler H; Boger A; Gueorguiev-Rüegg B; Ehlers W; Röhrle O
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02696. PubMed ID: 25369756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability study of vertebral cancellous bone using micro-computational fluid dynamics.
    Teo JC; Teoh SH
    Comput Methods Biomech Biomed Engin; 2012; 15(4):417-23. PubMed ID: 21229410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation.
    Basafa E; Murphy RJ; Kutzer MD; Otake Y; Armand M
    PLoS One; 2013; 8(6):e67958. PubMed ID: 23840794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of using viscoplastic bone cement for vertebroplasty: an in vivo clinical trial and in vitro cadaveric biomechanical examination.
    Lin SW; Chiang CK; Yang CL; Wang JL
    Spine (Phila Pa 1976); 2010 May; 35(10):E385-91. PubMed ID: 20393389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae.
    Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O
    Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebral augmentation with a novel Vessel-X bone void filling container system and bioactive bone cement.
    Zheng Z; Luk KD; Kuang G; Li Z; Lin J; Lam WM; Cheung KM; Lu WW
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2076-82. PubMed ID: 17762808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injection biomechanics of bone cements used in vertebroplasty.
    Baroud G; Bohner M; Heini P; Steffen T
    Biomed Mater Eng; 2004; 14(4):487-504. PubMed ID: 15472396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.