BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 14706324)

  • 1. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow.
    Vergroesen PA; van der Veen AJ; Emanuel KS; van Dieën JH; Smit TH
    J Biomech; 2016 Apr; 49(6):857-863. PubMed ID: 26684430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.
    Ayotte DC; Ito K; Perren SM; Tepic S
    J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression.
    Yao H; Gu WY
    J Biomech; 2007; 40(9):2071-7. PubMed ID: 17125776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc.
    Riches PE; McNally DS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal fluid expression and activity of intervertebral disc cells.
    Sivan S; Neidlinger-Wilke C; Würtz K; Maroudas A; Urban JP
    Biorheology; 2006; 43(3,4):283-91. PubMed ID: 16912401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis.
    Yao H; Gu WY
    Ann Biomed Eng; 2004 Mar; 32(3):380-90. PubMed ID: 15095812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ISSLS Prize Winner: Dynamic Loading-Induced Convective Transport Enhances Intervertebral Disc Nutrition.
    Gullbrand SE; Peterson J; Ahlborn J; Mastropolo R; Fricker A; Roberts TT; Abousayed M; Lawrence JP; Glennon JC; Ledet EH
    Spine (Phila Pa 1976); 2015 Aug; 40(15):1158-64. PubMed ID: 26222661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow deformation of intervertebral discs.
    Broberg KB
    J Biomech; 1993; 26(4-5):501-12. PubMed ID: 8478352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions.
    Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H
    J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model.
    Iatridis JC; Laible JP; Krag MH
    J Biomech Eng; 2003 Feb; 125(1):12-24. PubMed ID: 12661193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study.
    Massey CJ; van Donkelaar CC; Vresilovic E; Zavaliangos A; Marcolongo M
    J Orthop Res; 2012 Jan; 30(1):122-8. PubMed ID: 21710607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.