BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 14706324)

  • 21. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes.
    Malandrino A; Noailly J; Lacroix D
    PLoS Comput Biol; 2011 Aug; 7(8):e1002112. PubMed ID: 21829341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
    Steck R; Niederer P; Knothe Tate ML
    J Theor Biol; 2003 Jan; 220(2):249-59. PubMed ID: 12468296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in analytical modeling of lumbar disc degeneration.
    Natarajan RN; Williams JR; Andersson GB
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress.
    Wang P; Yang L; Hsieh AH
    Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal and spatial variations of pressure within intervertebral disc nuclei.
    Schmidt H; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2018 Mar; 79():309-313. PubMed ID: 29353774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solute convection in dynamically compressed cartilage.
    Evans RC; Quinn TM
    J Biomech; 2006; 39(6):1048-55. PubMed ID: 16549095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nonlinear hyperelastic mixture theory model for anisotropy, transport, and swelling of annulus fibrosus.
    Sun DD; Leong KW
    Ann Biomed Eng; 2004 Jan; 32(1):92-102. PubMed ID: 14964725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.
    Emanuel KS; van der Veen AJ; Rustenburg CME; Smit TH; Kingma I
    J Biomech; 2018 Mar; 70():10-15. PubMed ID: 29096981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow-related mechanics of the intervertebral disc: the validity of an in vitro model.
    van der Veen AJ; Mullender M; Smit TH; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2005 Sep; 30(18):E534-9. PubMed ID: 16166881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-dependent oxygen diffusivity in bovine annulus fibrosus.
    Yuan TY; Jackson AR; Huang CY; Gu WY
    J Biomech Eng; 2009 Jul; 131(7):074503. PubMed ID: 19640139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solute transport in intervertebral disc: experiments and finite element modeling.
    Das DB; Welling A; Urban JP; Boubriak OA
    Ann N Y Acad Sci; 2009 Apr; 1161():44-61. PubMed ID: 19426305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational pharmacokinetics of solute penetration into human intervertebral discs - effects of endplate permeability, solute molecular weight and disc size.
    Motaghinasab S; Shirazi-Adl A; Urban JP; Parnianpour M
    J Biomech; 2012 Aug; 45(13):2195-202. PubMed ID: 22840491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
    Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K
    J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.