BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 14706324)

  • 41. Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning.
    Schmidt H; Schilling C; Reyna ALP; Shirazi-Adl A; Dreischarf M
    J Biomech; 2016 Apr; 49(6):846-856. PubMed ID: 26549766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle.
    Malko JA; Hutton WC; Fajman WA
    Spine (Phila Pa 1976); 1999 May; 24(10):1015-22. PubMed ID: 10332795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of dynamic loading on solute transport through the human cartilage endplate.
    Sampson SL; Sylvia M; Fields AJ
    J Biomech; 2019 Jan; 83():273-279. PubMed ID: 30554819
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
    Gullbrand SE; Peterson J; Mastropolo R; Roberts TT; Lawrence JP; Glennon JC; DiRisio DJ; Ledet EH
    Spine J; 2015 May; 15(5):1028-33. PubMed ID: 25500262
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are disc pressure, stress, and osmolarity affected by intra- and extrafibrillar fluid exchange?
    Schroeder Y; Sivan S; Wilson W; Merkher Y; Huyghe JM; Maroudas A; Baaijens FP
    J Orthop Res; 2007 Oct; 25(10):1317-24. PubMed ID: 17557324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite element study of nutrient diffusion in the human intervertebral disc.
    Sélard E; Shirazi-Adl A; Urban JP
    Spine (Phila Pa 1976); 2003 Sep; 28(17):1945-53; discussion 1953. PubMed ID: 12973139
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique.
    Travascio F; Gu WY
    Ann Biomed Eng; 2007 Oct; 35(10):1739-48. PubMed ID: 17605108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading.
    Chuang SY; Popovich JM; Lin LC; Hedman TP
    Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling the nutrientsbehavior in intervertebral discs: a boundary integral simulation.
    González Y; Nieto F; Cerrolaza M
    Mol Cell Biomech; 2013 Mar; 10(1):67-84. PubMed ID: 24010246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact response of the intervertebral disc in a finite-element model.
    Lee CK; Kim YE; Lee CS; Hong YM; Jung JM; Goel VK
    Spine (Phila Pa 1976); 2000 Oct; 25(19):2431-9. PubMed ID: 11013493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.
    Malandrino A; Noailly J; Lacroix D
    J Biomech; 2014 Apr; 47(6):1520-5. PubMed ID: 24612720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.
    Silva P; Crozier S; Veidt M; Pearcy MJ
    J Mater Sci Mater Med; 2005 Jul; 16(7):663-9. PubMed ID: 15965599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of convective and diffusive transport in the brain interstitium.
    Ray L; Iliff JJ; Heys JJ
    Fluids Barriers CNS; 2019 Mar; 16(1):6. PubMed ID: 30836968
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs.
    Gantenbein B; Grünhagen T; Lee CR; van Donkelaar CC; Alini M; Ito K
    Spine (Phila Pa 1976); 2006 Nov; 31(23):2665-73. PubMed ID: 17077734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
    Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc.
    Soukane DM; Shirazi-Adl A; Urban JP
    J Biomech; 2007; 40(12):2645-54. PubMed ID: 17336990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review of the fluid flow within intervertebral discs - How could in vitro measurements replicate in vivo?
    Schmidt H; Reitmaier S; Graichen F; Shirazi-Adl A
    J Biomech; 2016 Oct; 49(14):3133-3146. PubMed ID: 27651134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering.
    Sengers BG; Oomens CW; Baaijens FP
    J Biomech Eng; 2004 Feb; 126(1):82-91. PubMed ID: 15171133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paraspinal muscle activation in accordance with mechanoreceptors in the intervertebral discs.
    Kim YE; Choi HW
    Proc Inst Mech Eng H; 2013 Feb; 227(2):138-47. PubMed ID: 23513985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear numerical analysis of the structural response of the intervertebral disc to impact loading.
    Marini G; Ferguson SJ
    Comput Methods Biomech Biomed Engin; 2014; 17(9):1002-11. PubMed ID: 23167693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.