These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 14706324)

  • 61. Analysis of nonlinear coupled diffusion of oxygen and lactic acid in intervertebral discs.
    Soukane DM; Shirazi-Adl A; Urban JP
    J Biomech Eng; 2005 Dec; 127(7):1121-6. PubMed ID: 16502654
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.
    Stokes IA; Laible JP; Gardner-Morse MG; Costi JJ; Iatridis JC
    Ann Biomed Eng; 2011 Jan; 39(1):122-31. PubMed ID: 20711754
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.
    Hwang D; Gabai AS; Yu M; Yew AG; Hsieh AH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):95-106. PubMed ID: 21380846
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
    Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M
    J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach.
    Yao H; Gu WY
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):63-72. PubMed ID: 16767452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Confined compression of canine annulus fibrosus under chemical and mechanical loading.
    Drost MR; Willems P; Snijders H; Huyghe JM; Janssen JD; Huson A
    J Biomech Eng; 1995 Nov; 117(4):390-6. PubMed ID: 8748519
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Is post-contrast MRI a valuable method for the study of the nutrition of the intervertebral disc?
    Galbusera F; Brayda-Bruno M; Wilke HJ
    J Biomech; 2014 Sep; 47(12):3028-34. PubMed ID: 25059896
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An ex vivo model to study transport processes and fluid flow in loaded bone.
    Knothe Tate ML; Knothe U
    J Biomech; 2000 Feb; 33(2):247-54. PubMed ID: 10653041
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biomechanical and Endplate Effects on Nutrient Transport in the Intervertebral Disc.
    Giers MB; Munter BT; Eyster KJ; Ide GD; Newcomb AGUS; Lehrman JN; Belykh E; Byvaltsev VA; Kelly BP; Preul MC; Theodore N
    World Neurosurg; 2017 Mar; 99():395-402. PubMed ID: 28012886
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of interstitial fluid flow in the remodeling response to fatigue loading.
    Tami AE; Nasser P; Verborgt O; Schaffler MB; Knothe Tate ML
    J Bone Miner Res; 2002 Nov; 17(11):2030-7. PubMed ID: 12412811
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of oscillating fluid shear on solute transport in cortical bone.
    Schmidt SM; McCready MJ; Ostafin AE
    J Biomech; 2005 Dec; 38(12):2337-43. PubMed ID: 16214481
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading.
    Stokes IA; Chegini S; Ferguson SJ; Gardner-Morse MG; Iatridis JC; Laible JP
    Ann Biomed Eng; 2010 May; 38(5):1780-8. PubMed ID: 20306136
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of convection on the diffusive transport and sieving of water and small solutes across the peritoneal membrane.
    Asghar RB; Diskin AM; Spanel P; Smith D; Davies SJ
    J Am Soc Nephrol; 2005 Feb; 16(2):437-43. PubMed ID: 15625074
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Disc size markedly influences concentration profiles of intravenously administered solutes in the intervertebral disc: a computational study on glucosamine as a model solute.
    Motaghinasab S; Shirazi-Adl A; Parnianpour M; Urban JP
    Eur Spine J; 2014 Apr; 23(4):715-23. PubMed ID: 24375329
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A poroelastic-swelling finite element model with application to the intervertebral disc.
    Laible JP; Pflaster DS; Krag MH; Simon BR; Haugh LD
    Spine (Phila Pa 1976); 1993 Apr; 18(5):659-70. PubMed ID: 8484158
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanobiology of the intervertebral disc and relevance to disc degeneration.
    Setton LA; Chen J
    J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():52-7. PubMed ID: 16595444
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate.
    Wu Y; Cisewski SE; Wegner N; Zhao S; Pellegrini VD; Slate EH; Yao H
    J Biomech; 2016 Sep; 49(13):2756-2762. PubMed ID: 27338525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.