These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 14706324)

  • 81. Nutrient distribution and metabolism in the intervertebral disc in the unloaded state: a parametric study.
    Magnier C; Boiron O; Wendling-Mansuy S; Chabrand P; Deplano V
    J Biomech; 2009 Jan; 42(2):100-8. PubMed ID: 19110252
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37219843
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.
    Jin BJ; Smith AJ; Verkman AS
    J Gen Physiol; 2016 Dec; 148(6):489-501. PubMed ID: 27836940
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading.
    Williams JR; Natarajan RN; Andersson GB
    J Biomech; 2007; 40(9):1981-7. PubMed ID: 17156786
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The effects of dynamic loading on the intervertebral disc.
    Chan SC; Ferguson SJ; Gantenbein-Ritter B
    Eur Spine J; 2011 Nov; 20(11):1796-812. PubMed ID: 21541667
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation.
    Malandrino A; Planell JA; Lacroix D
    J Biomech; 2009 Dec; 42(16):2780-8. PubMed ID: 19796766
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Remedy for fictive negative pressures in biphasic finite element models of the intervertebral disc during unloading.
    Schmidt H; Galbusera F; Wilke HJ; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):293-303. PubMed ID: 21347916
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues.
    Gu WY; Yao H
    Ann Biomed Eng; 2003 Nov; 31(10):1162-70. PubMed ID: 14649490
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Solute transport to the endothelial intercellular cleft: the effect of wall shear stress.
    Hodgson L; Tarbell JM
    Ann Biomed Eng; 2002; 30(7):936-45. PubMed ID: 12398424
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Nonlinear stress-dependent recovery behavior of the intervertebral disc.
    Bezci SE; Lim S; O'Connell GD
    J Mech Behav Biomed Mater; 2020 Oct; 110():103881. PubMed ID: 32957189
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Diffusion and partition of solutes in cartilage under static load.
    Nimer E; Schneiderman R; Maroudas A
    Biophys Chem; 2003 Nov; 106(2):125-46. PubMed ID: 14556902
    [TBL] [Abstract][Full Text] [Related]  

  • 95. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains.
    Bruehlmann SB; Hulme PA; Duncan NA
    J Biomech; 2004 Feb; 37(2):223-31. PubMed ID: 14706325
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Does blood pressure enhance solute transport in the bone lacunar-canalicular system?
    Li W; Gardinier JD; Price C; Wang L
    Bone; 2010 Aug; 47(2):353-9. PubMed ID: 20471508
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow.
    Price C; Zhou X; Li W; Wang L
    J Bone Miner Res; 2011 Feb; 26(2):277-85. PubMed ID: 20715178
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Investigation of solute concentrations in a 3D model of intervertebral disc.
    Mokhbi Soukane D; Shirazi-Adl A; Urban JP
    Eur Spine J; 2009 Feb; 18(2):254-62. PubMed ID: 19015897
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Monitoring water content in deforming intervertebral disc tissue by finite element analysis of MRI data.
    Kingma I; van Dieën JH; Nicolay K; Maat JJ; Weinans H
    Magn Reson Med; 2000 Oct; 44(4):650-4. PubMed ID: 11025523
    [TBL] [Abstract][Full Text] [Related]  

  • 100. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading.
    Knothe Tate ML; Niederer P; Knothe U
    Bone; 1998 Feb; 22(2):107-17. PubMed ID: 9477233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.