These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 14706324)

  • 101. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading.
    Knothe Tate ML; Niederer P; Knothe U
    Bone; 1998 Feb; 22(2):107-17. PubMed ID: 9477233
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Effect of dynamic loading on the transport of solutes into agarose hydrogels.
    Chahine NO; Albro MB; Lima EG; Wei VI; Dubois CR; Hung CT; Ateshian GA
    Biophys J; 2009 Aug; 97(4):968-75. PubMed ID: 19686643
    [TBL] [Abstract][Full Text] [Related]  

  • 103. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
    Qin YX; Lin W; Rubin C
    Ann Biomed Eng; 2002 May; 30(5):693-702. PubMed ID: 12108843
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Experimental factors governing the internal stress state of the intervertebral disc.
    Oloyede A; Broom ND; Martinez JB
    Med Eng Phys; 1998 Nov; 20(8):631-7. PubMed ID: 9888244
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Is solute movement within the extracellular spaces of brain gray matter brought about primarily by diffusion or flow? A commentary on "Analysis of convective and diffusive transport in the brain interstitium" Fluids and Barriers of the CNS (2019) 16:6 by L. Ray, J.J. Iliff and J.J. Heys.
    Hladky SB; Barrand MA
    Fluids Barriers CNS; 2019 Jul; 16(1):24. PubMed ID: 31299992
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Modeling tracer transport in an osteon under cyclic loading.
    Wang L; Cowin SC; Weinbaum S; Fritton SP
    Ann Biomed Eng; 2000; 28(10):1200-9. PubMed ID: 11144981
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Preliminary model of fluid and solute distribution and transport during hemorrhage.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Ann Biomed Eng; 2003; 31(7):823-39. PubMed ID: 12971615
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity.
    Gu WY; Yao H; Vega AL; Flagler D
    Ann Biomed Eng; 2004 Dec; 32(12):1710-7. PubMed ID: 15675682
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates.
    Hong J; Ko SO; Khang G; Mun MS
    J Mater Sci Mater Med; 2008 Jul; 19(7):2589-94. PubMed ID: 17914630
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading.
    Culliton KN; Speirs AD
    Osteoarthritis Cartilage; 2021 Sep; 29(9):1362-1369. PubMed ID: 34082132
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Diffusioosmotic and convective flows induced by a nonelectrolyte concentration gradient.
    Williams I; Lee S; Apriceno A; Sear RP; Battaglia G
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25263-25271. PubMed ID: 32989158
    [TBL] [Abstract][Full Text] [Related]  

  • 113. A poroelastic model describing nutrient transport and cell stresses within a cyclically strained collagen hydrogel.
    Vaughan BL; Galie PA; Stegemann JP; Grotberg JB
    Biophys J; 2013 Nov; 105(9):2188-98. PubMed ID: 24209865
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism.
    Baxter LT; Jain RK
    Microvasc Res; 1991 Jan; 41(1):5-23. PubMed ID: 2051954
    [TBL] [Abstract][Full Text] [Related]  

  • 115. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.
    Secomb TW
    Math Med Biol; 2016 Dec; 33(4):475-494. PubMed ID: 26443811
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Electrohydrodynamic transport of non-symmetric electrolyte through porous wall of a microtube.
    Bhattacharjee S; Roy D; Pal A; De S
    Electrophoresis; 2019 Mar; 40(5):720-729. PubMed ID: 30362567
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Modulation of the interstitial fluid pressure by high intensity focused ultrasound as a way to alter local fluid and solute movement: insights from a mathematical model.
    Sassaroli E; O'Neill BE
    Phys Med Biol; 2014 Nov; 59(22):6775-95. PubMed ID: 25327766
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Homeostasis disrupted by strain mechanosensing.
    DiStefano TJ; Illien-Jünger S; Iatridis JC
    Nat Biomed Eng; 2019 Dec; 3(12):951-952. PubMed ID: 31811265
    [TBL] [Abstract][Full Text] [Related]  

  • 119. A method for measuring intra-tissue swelling pressure using a needle micro-osmometer.
    Krull CM; Lutton AD; Olesik JW; Walter BA
    Eur Cell Mater; 2020 Sep; 40():146-159. PubMed ID: 32981028
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Interstitial pressure, volume, and flow during infusion into brain tissue.
    Basser PJ
    Microvasc Res; 1992 Sep; 44(2):143-65. PubMed ID: 1474925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.