These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 14706859)
21. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. Costa V; Quintanilha A; Moradas-Ferreira P IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968 [TBL] [Abstract][Full Text] [Related]
22. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Kumar A; John L; Alam MM; Gupta A; Sharma G; Pillai B; Sengupta S Biochem J; 2006 May; 396(1):61-9. PubMed ID: 16433631 [TBL] [Abstract][Full Text] [Related]
23. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Kasemets K; Suppi S; Künnis-Beres K; Kahru A Chem Res Toxicol; 2013 Mar; 26(3):356-67. PubMed ID: 23339633 [TBL] [Abstract][Full Text] [Related]
24. Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. Tamarit J; de Hoogh A; Obis E; Alsina D; Cabiscol E; Ros J J Proteomics; 2012 Jun; 75(12):3778-88. PubMed ID: 22579746 [TBL] [Abstract][Full Text] [Related]
25. Application of a redox-proteomics toolbox to Daphnia magna challenged with model pro-oxidants copper and paraquat. Rainville LC; Coelho AV; Sheehan D Environ Toxicol Chem; 2015 Jan; 34(1):84-91. PubMed ID: 25263122 [TBL] [Abstract][Full Text] [Related]
26. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Lee SM; Park JW Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566 [TBL] [Abstract][Full Text] [Related]
28. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. Nguyen TT; Kitajima S; Izawa S J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964 [TBL] [Abstract][Full Text] [Related]
29. Copper deprivation modulates CTR1 and CUP1 expression and enhances cisplatin cytotoxicity in Saccharomyces cerevisiae. Kommuguri UN; Bodiga S; Sankuru S; Bodiga VL J Trace Elem Med Biol; 2012 Jan; 26(1):13-9. PubMed ID: 22365074 [TBL] [Abstract][Full Text] [Related]
30. Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae. Tan SZ; Manchester S; Prather KL ACS Synth Biol; 2016 Feb; 5(2):116-24. PubMed ID: 26544022 [TBL] [Abstract][Full Text] [Related]
31. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Du X; Takagi H Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467 [TBL] [Abstract][Full Text] [Related]
32. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. Ríos G; Cabedo M; Rull B; Yenush L; Serrano R; Mulet JM FEMS Yeast Res; 2013 Feb; 13(1):97-106. PubMed ID: 23106982 [TBL] [Abstract][Full Text] [Related]
33. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831 [TBL] [Abstract][Full Text] [Related]
34. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Hu W; Culloty S; Darmody G; Lynch S; Davenport J; Ramirez-Garcia S; Dawson KA; Lynch I; Blasco J; Sheehan D Chemosphere; 2014 Aug; 108():289-99. PubMed ID: 24582357 [TBL] [Abstract][Full Text] [Related]
35. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878 [TBL] [Abstract][Full Text] [Related]
36. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification. Fernandes AR; Sá-Correia I Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007 [TBL] [Abstract][Full Text] [Related]
37. [The role of catalases in protection of proteins against oxidation in Saccharomyces cerevisiae utilizing ethanol as a carbon source]. Hospodar'ov DV; Mandryk SIa; Lushchak VI Ukr Biokhim Zh (1999); 2005; 77(2):162-5. PubMed ID: 16335251 [TBL] [Abstract][Full Text] [Related]
38. N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains. Al-Attrache H; Chamieh H; Hamzé M; Morel I; Taha S; Abdel-Razzak Z Drug Chem Toxicol; 2018 Jan; 41(1):89-94. PubMed ID: 28504001 [TBL] [Abstract][Full Text] [Related]
39. Metabolic regulation of pathways of carbohydrate oxidation in potato (Solanum tuberosum) tubers. Centeno DC; Oliver SN; Nunes-Nesi A; Geigenberger P; Machado DN; Loureiro ME; Silva MA; Fernie AR Physiol Plant; 2008 Aug; 133(4):744-54. PubMed ID: 18494735 [TBL] [Abstract][Full Text] [Related]
40. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Mariani D; Mathias CJ; da Silva CG; Herdeiro Rda S; Pereira R; Panek AD; Eleutherio EC; Pereira MD Redox Rep; 2008; 13(6):246-54. PubMed ID: 19017464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]