BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14707144)

  • 1. A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides.
    Fischer R; Köhler K; Fotin-Mleczek M; Brock R
    J Biol Chem; 2004 Mar; 279(13):12625-35. PubMed ID: 14707144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of membrane tubule formation and trafficking by isotetrandrine, an antagonist of G-protein-regulated phospholipase A2 enzymes.
    Chan D; Strang M; Judson B; Brown WJ
    Mol Biol Cell; 2004 Apr; 15(4):1871-80. PubMed ID: 14767064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology.
    Kirkbride KC; Hong NH; French CL; Clark ES; Jerome WG; Weaver AM
    Cytoskeleton (Hoboken); 2012 Sep; 69(9):625-43. PubMed ID: 22991200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Penetrating Peptide Mediates Intracellular Membrane Passage of Human Papillomavirus L2 Protein to Trigger Retrograde Trafficking.
    Zhang P; Monteiro da Silva G; Deatherage C; Burd C; DiMaio D
    Cell; 2018 Sep; 174(6):1465-1476.e13. PubMed ID: 30122350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrograde traffic in the biosynthetic-secretory route.
    Pavelka M; Neumüller J; Ellinger A
    Histochem Cell Biol; 2008 Mar; 129(3):277-88. PubMed ID: 18270728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular transport is not required for the cytoplasmic pool of cholera toxin to interact with the stimulatory alpha subunit of the heterotrimeric g protein.
    Teter K; Jobling MG; Holmes RK
    Infect Immun; 2004 Dec; 72(12):6826-35. PubMed ID: 15557603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery.
    Melikov K; Chernomordik LV
    Cell Mol Life Sci; 2005 Dec; 62(23):2739-49. PubMed ID: 16231085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery.
    Qian Z; LaRochelle JR; Jiang B; Lian W; Hard RL; Selner NG; Luechapanichkul R; Barrios AM; Pei D
    Biochemistry; 2014 Jun; 53(24):4034-46. PubMed ID: 24896852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm.
    Appelbaum JS; LaRochelle JR; Smith BA; Balkin DM; Holub JM; Schepartz A
    Chem Biol; 2012 Jul; 19(7):819-30. PubMed ID: 22840770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides.
    Salim H; Pei D
    Methods Mol Biol; 2022; 2371():301-316. PubMed ID: 34596855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caspase-activated cell-penetrating peptides reveal temporal coupling between endosomal release and apoptosis in an RGC-5 cell model.
    Johnson JR; Kocher B; Barnett EM; Marasa J; Piwnica-Worms D
    Bioconjug Chem; 2012 Sep; 23(9):1783-93. PubMed ID: 22900707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internalization of cationic peptides: the road less (or more?) traveled.
    Fuchs SM; Raines RT
    Cell Mol Life Sci; 2006 Aug; 63(16):1819-22. PubMed ID: 16909213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues.
    Ng DYW; Vill R; Wu Y; Koynov K; Tokura Y; Liu W; Sihler S; Kreyes A; Ritz S; Barth H; Ziener U; Weil T
    Nat Commun; 2017 Nov; 8(1):1850. PubMed ID: 29185444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing peptide-mediated DNA internalization in human cancer cells.
    Wittrup A; Belting M
    Methods Mol Biol; 2009; 480():101-12. PubMed ID: 19085116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism.
    Soulet D; Gagnon B; Rivest S; Audette M; Poulin R
    J Biol Chem; 2004 Nov; 279(47):49355-66. PubMed ID: 15208319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAT peptide at treatment-level concentrations crossed brain endothelial cell monolayer independent of receptor-mediated endocytosis or peptide-inflicted barrier disruption.
    Wu MC; Wang EY; Lai TW
    PLoS One; 2023; 18(10):e0292681. PubMed ID: 37819924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoisomer-Dependent Membrane Association and Capacity for Insulin Delivery Facilitated by Penetratin.
    Birch D; Sayers EJ; Christensen MV; Jones AT; Franzyk H; Nielsen HM
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides as potential therapy for gastrointestinal cancers.
    Yang X; Hua C; Lin L; Ganting Z
    Naunyn Schmiedebergs Arch Pharmacol; 2023 Nov; 396(11):2831-2841. PubMed ID: 37249612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Immunotoxin Targeting Epithelial Cell Adhesion Molecule Using Single Domain Antibody Fused to Diphtheria Toxin.
    Roshan R; Naderi S; Behdani M; Ahangari Cohan R; Kazemi-Lomedasht F
    Mol Biotechnol; 2023 Apr; 65(4):637-644. PubMed ID: 36129635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application.
    Röckendorf N; Nehls C; Gutsmann T
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.