BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 14708610)

  • 41. Development of a human in vivo method to study the effect of ultraviolet radiation and sunscreens in melanocytic nevi.
    Carrera C; Puig S; Llambrich A; Palou J; Lecha M; Massi D; Malvehy J
    Dermatology; 2008; 217(2):124-36. PubMed ID: 18503257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultraviolet AI exposure of human skin results in Langerhans cell depletion and reduction of epidermal antigen-presenting cell function: partial protection by a broad-spectrum sunscreen.
    Dumay O; Karam A; Vian L; Moyal D; Hourseau C; Stoebner P; Peyron JL; Meynadier J; Cano JP; Meunier L
    Br J Dermatol; 2001 Jun; 144(6):1161-8. PubMed ID: 11422036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sunscreen lotions prevent ultraviolet radiation-induced suppression of antitumor immune responses.
    Roberts LK; Beasley DG
    Int J Cancer; 1997 Mar; 71(1):94-102. PubMed ID: 9096671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Sunprotection: possibilities and limitations].
    Elsner P; Beissert S; Luger TA
    J Dtsch Dermatol Ges; 2005 Sep; 3 Suppl 2():S40-4. PubMed ID: 16117744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A sunscreen's labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study.
    Young AR; Boles J; Herzog B; Osterwalder U; Baschong W
    J Invest Dermatol; 2010 Oct; 130(10):2457-62. PubMed ID: 20535128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Senescence and sunscreens.
    Young AR
    Br J Dermatol; 1990 Apr; 122 Suppl 35():111-4. PubMed ID: 2186778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of topical sunscreens on the UV-radiation-induced suppression of the alloactivating capacity in human skin in vivo.
    van Praag MC; Out-Luyting C; Claas FH; Vermeer BJ; Mommaas AM
    J Invest Dermatol; 1991 Oct; 97(4):629-33. PubMed ID: 1834749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sunscreens with low sun protection factor inhibit ultraviolet B and A photoaging in the skin of the hairless albino mouse.
    Harrison JA; Walker SL; Plastow SR; Batt MD; Hawk JL; Young AR
    Photodermatol Photoimmunol Photomed; 1991 Feb; 8(1):12-20. PubMed ID: 1768605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential photoimmunoprotection by sunscreen ingredients is unrelated to epidermal cis urocanic acid formation in hairless mice.
    Reeve VE; Boehm-Wilcox C; Bosnic M; Reilly WG
    J Invest Dermatol; 1994 Dec; 103(6):801-6. PubMed ID: 7798618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of UVB-absorbing sunscreen ingredients with cutaneous molecules may alter photoimmune protection.
    Reeve VE; Bosnic M; Domanski D
    Photochem Photobiol; 2001 Dec; 74(6):765-70. PubMed ID: 11783931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis.
    Russo PA; Halliday GM
    Br J Dermatol; 2006 Aug; 155(2):408-15. PubMed ID: 16882182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immunologic protection afforded by sunscreens in vitro.
    Davenport V; Morris JF; Chu AC
    J Invest Dermatol; 1997 Jun; 108(6):859-63. PubMed ID: 9182811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New noninvasive approach assessing in vivo sun protection factor (SPF) using diffuse reflectance spectroscopy (DRS) and in vitro transmission.
    Ruvolo Junior E; Kollias N; Cole C
    Photodermatol Photoimmunol Photomed; 2014 Aug; 30(4):202-11. PubMed ID: 24417335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of UVA radiation on an established immune response in humans and sunscreen efficacy.
    Moyal DD; Fourtanier AM
    Exp Dermatol; 2002; 11 Suppl 1():28-32. PubMed ID: 12444956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultraviolet a radiation suppresses an established immune response: implications for sunscreen design.
    Nghiem DX; Kazimi N; Clydesdale G; Ananthaswamy HN; Kripke ML; Ullrich SE
    J Invest Dermatol; 2001 Nov; 117(5):1193-9. PubMed ID: 11710932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen.
    Marionnet C; Pierrard C; Lejeune F; Bernerd F
    J Photochem Photobiol B; 2012 Nov; 116():37-47. PubMed ID: 22960577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of solar simulator-induced p53 mutations and protection against skin cancer development in mice by sunscreens.
    Ananthaswamy HN; Ullrich SE; Mascotto RE; Fourtanier A; Loughlin SM; Khaskina P; Bucana CD; Kripke ML
    J Invest Dermatol; 1999 May; 112(5):763-8. PubMed ID: 10233769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sunscreens and melanoma: the future looks bright.
    Diffey BL
    Br J Dermatol; 2005 Aug; 153(2):378-81. PubMed ID: 16086753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sunscreens and vitamin E provide some protection to the skin immune system from solar-simulated UV radiation.
    Halliday GM; Yuen KS; Bestak R; Barnetson RS
    Australas J Dermatol; 1998 May; 39(2):71-5. PubMed ID: 9611373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of Model Sunscreen Formulations Comparing the Sun Protection Factor, the Universal Sun Protection Factor and the Radical Formation Ratio.
    Syring F; Weigmann HJ; Schanzer S; Meinke MC; Knorr F; Lademann J
    Skin Pharmacol Physiol; 2016; 29(1):18-23. PubMed ID: 26501151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.