BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 14709025)

  • 1. The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms.
    Tsuji Y; Chen F; Yasuda S; Fukushima K
    J Agric Food Chem; 2004 Jan; 52(1):131-4. PubMed ID: 14709025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiform biosynthetic pathway of syringyl lignin in angiosperms.
    Yamauchi K; Yasuda S; Hamada K; Tsutsumi Y; Fukushima K
    Planta; 2003 Jan; 216(3):496-501. PubMed ID: 12520342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L.
    Tsuji Y; Chen F; Yasuda S; Fukushima K
    Planta; 2005 Sep; 222(1):58-69. PubMed ID: 15986215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of monolignol glucosides in angiosperms.
    Tsuji Y; Fukushima K
    J Agric Food Chem; 2004 Dec; 52(25):7651-9. PubMed ID: 15675817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method.
    Sakakibara N; Nakatsubo T; Suzuki S; Shibata D; Shimada M; Umezawa T
    Org Biomol Chem; 2007 Mar; 5(5):802-15. PubMed ID: 17315067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the biosynthetic pathway from sinapic acid to syringyl lignin using labeled sinapic acid with stable isotope at both methoxy groups in Robinia pseudoacacia and Nerium indicum.
    Yamauchi K; Yasuda S; Fukushima K
    J Agric Food Chem; 2002 May; 50(11):3222-7. PubMed ID: 12009990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of guaiacyl to syringyl moieties on the cinnamyl alcohol pathway during the biosynthesis of lignin in angiosperms.
    Matsui N; Chen F; Yasuda S; Fukushima K
    Planta; 2000 Apr; 210(5):831-5. PubMed ID: 10805456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignification in poplar plantlets fed with deuterium-labelled lignin precursors.
    Rolando C; Daubresse N; Pollet B; Jouanin L; Lapierre C
    C R Biol; 2004; 327(9-10):799-807. PubMed ID: 15587071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the characteristic secondary ions of lignin polymer using ToF-SIMS.
    Saito K; Kato T; Tsuji Y; Fukushima K
    Biomacromolecules; 2005; 6(2):678-83. PubMed ID: 15762629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms.
    Osakabe K; Tsao CC; Li L; Popko JL; Umezawa T; Carraway DT; Smeltzer RH; Joshi CP; Chiang VL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8955-60. PubMed ID: 10430877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.
    Miyagawa Y; Tobimatsu Y; Lam PY; Mizukami T; Sakurai S; Kamitakahara H; Takano T
    Plant J; 2020 Sep; 104(1):156-170. PubMed ID: 32623768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis.
    Goicoechea M; Lacombe E; Legay S; Mihaljevic S; Rech P; Jauneau A; Lapierre C; Pollet B; Verhaegen D; Chaubet-Gigot N; Grima-Pettenati J
    Plant J; 2005 Aug; 43(4):553-67. PubMed ID: 16098109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.
    Lourenço A; Gominho J; Marques AV; Pereira H
    Bioresour Technol; 2012 Nov; 123():296-302. PubMed ID: 22940333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods.
    Nunes CA; Lima CF; Barbosa LC; Colodette JL; Gouveia AF; Silvério FO
    Bioresour Technol; 2010 Jun; 101(11):4056-61. PubMed ID: 20133130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase.
    Li L; Cheng XF; Leshkevich J; Umezawa T; Harding SA; Chiang VL
    Plant Cell; 2001 Jul; 13(7):1567-86. PubMed ID: 11449052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for the evolution of xylem lignification.
    Peter G; Neale D
    Curr Opin Plant Biol; 2004 Dec; 7(6):737-42. PubMed ID: 15491924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
    Samuels AL; Rensing KH; Douglas CJ; Mansfield SD; Dharmawardhana DP; Ellis BE
    Planta; 2002 Nov; 216(1):72-82. PubMed ID: 12430016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis.
    Ye ZH; Zhong R; Morrison WH; Himmelsbach DS
    Phytochemistry; 2001 Aug; 57(7):1177-85. PubMed ID: 11430990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
    Kishimoto T; Chiba W; Saito K; Fukushima K; Uraki Y; Ubukata M
    J Agric Food Chem; 2010 Jan; 58(2):895-901. PubMed ID: 20041658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms.
    Li L; Popko JL; Umezawa T; Chiang VL
    J Biol Chem; 2000 Mar; 275(9):6537-45. PubMed ID: 10692459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.