BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 14709080)

  • 21. Molecular crowding induces telomere G-quadruplex formation under salt-deficient conditions and enhances its competition with duplex formation.
    Kan ZY; Yao Y; Wang P; Li XH; Hao YH; Tan Z
    Angew Chem Int Ed Engl; 2006 Feb; 45(10):1629-32. PubMed ID: 16470760
    [No Abstract]   [Full Text] [Related]  

  • 22. Circular dichroism spectra of DNA quadruplexes [d(G(5)T(5))](4) as formed with G(4) and T(4) tetrads and [d(G(5)T(5)). d(A(5)C(5))]2 as formed with Watson-Crick-like (G-C)(2) and (T-A)(2) tetrads.
    Ito H; Tanaka S; Miyasaka M
    Biopolymers; 2002 Oct; 65(2):61-80. PubMed ID: 12209457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of flanking bases on quadruplex stability and Watson-Crick duplex competition.
    Arora A; Nair DR; Maiti S
    FEBS J; 2009 Jul; 276(13):3628-40. PubMed ID: 19490117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere.
    Kaushik M; Bansal A; Saxena S; Kukreti S
    Biochemistry; 2007 Jun; 46(24):7119-31. PubMed ID: 17523598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of molecular logic gates using the structural switch of telomere DNAs.
    Inoue M; Miyoshi D; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2006; (50):315-6. PubMed ID: 17150944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of structure and stability of long telomeric DNA G-quadruplexes.
    Yu HQ; Miyoshi D; Sugimoto N
    J Am Chem Soc; 2006 Dec; 128(48):15461-8. PubMed ID: 17132013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements.
    Petraccone L; Erra E; Esposito V; Randazzo A; Mayol L; Nasti L; Barone G; Giancola C
    Biochemistry; 2004 Apr; 43(16):4877-84. PubMed ID: 15096057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural diversity and extreme stability of unimolecular Oxytricha nova telomeric G-quadruplex.
    Lee JY; Yoon J; Kihm HW; Kim DS
    Biochemistry; 2008 Mar; 47(11):3389-96. PubMed ID: 18298084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions.
    Zhou J; Wei C; Jia G; Wang X; Tang Q; Feng Z; Li C
    Biophys Chem; 2008 Aug; 136(2-3):124-7. PubMed ID: 18562078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure monomorphism of RNA G-quadruplex that is independent of surrounding condition.
    Zhang DH; Zhi GY
    J Biotechnol; 2010 Oct; 150(1):6-10. PubMed ID: 20670662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. T-loop formation by human telomeric G-quadruplex.
    Xu Y; Sato H; Shinohara K; Komiyama M; Sugiyama H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):243-4. PubMed ID: 18029677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat capacity changes associated with guanine quadruplex formation: an isothermal titration calorimetry study.
    Majhi PR; Qi J; Tang CF; Shafer RH
    Biopolymers; 2008 Apr; 89(4):302-9. PubMed ID: 18183583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of the formation of DNA triplex and effect of chemical modifications on its stability as studied by isothermal titration calorimetry.
    Kamiya M; Shimizume R; Shindo H; Torigoe H; Sarai A
    Nucleic Acids Symp Ser; 1995; (34):57-8. PubMed ID: 8841550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The triazatruxene derivative azatrux binds to the parallel form of the human telomeric G-quadruplex under molecular crowding conditions: biophysical and molecular modeling studies.
    Petraccone L; Fotticchia I; Cummaro A; Pagano B; Ginnari-Satriani L; Haider S; Randazzo A; Novellino E; Neidle S; Giancola C
    Biochimie; 2011 Aug; 93(8):1318-27. PubMed ID: 21641960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking.
    Olsen CM; Gmeiner WH; Marky LA
    J Phys Chem B; 2006 Apr; 110(13):6962-9. PubMed ID: 16571009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biophysical properties of quadruple helices of modified human telomeric DNA.
    Petraccone L; Erra E; Esposito V; Randazzo A; Galeone A; Barone G; Giancola C
    Biopolymers; 2005 Feb; 77(2):75-85. PubMed ID: 15614794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of locked nucleic acid modified complementary strand in quadruplex/Watson-Crick duplex equilibrium.
    Kumar N; Maiti S
    J Phys Chem B; 2007 Oct; 111(42):12328-37. PubMed ID: 17914789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet.
    Kong DM; Ma YE; Wu J; Shen HX
    Chemistry; 2009; 15(4):901-9. PubMed ID: 19053101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo.
    Paeschke K; Simonsson T; Postberg J; Rhodes D; Lipps HJ
    Nat Struct Mol Biol; 2005 Oct; 12(10):847-54. PubMed ID: 16142245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene.
    Li H; Liu Y; Lin S; Yuan G
    Chemistry; 2009; 15(10):2445-52. PubMed ID: 19156807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.