These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 14709223)

  • 1. Laser-induced temperature changes in dentine.
    Keller OR; Weber FE; Grätz KW; Baltensperger MM; Eyrich GK
    J Clin Laser Med Surg; 2003 Dec; 21(6):375-81. PubMed ID: 14709223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature response in the pulpal chamber of primary human teeth exposed to Nd:YAG laser using a picosecond pulsed regime.
    Lizarelli RF; Moriyama LT; Bagnato VS
    Photomed Laser Surg; 2006 Oct; 24(5):610-5. PubMed ID: 17069492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optothermal transfer simulation in laser-irradiated human dentin.
    Moriyama EH; Zangaro RA; Lobo PD; Villaverde AB; Pacheco MT; Watanabe IS; Vitkin A
    J Biomed Opt; 2003 Apr; 8(2):298-302. PubMed ID: 12683857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.
    Secilmis A; Bulbul M; Sari T; Usumez A
    Lasers Med Sci; 2013 Jan; 28(1):167-70. PubMed ID: 22562450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of CO2, Nd:YAG, and ArF excimer lasers on dentin morphology and pulp chamber temperature: an in vitro study.
    Türkmen C; Günday M; Karaçorlu M; Başaran B
    J Endod; 2000 Nov; 26(11):644-8. PubMed ID: 11469292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations on pulpal response to carbon dioxide laser drilling of dentine in healthy human third molars.
    Nair PN; Baltensperger M; Luder HU; Eyrich GK
    Lasers Med Sci; 2005; 19(4):240-7. PubMed ID: 15647971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of cooling systems on CO2-lased human enamel.
    Lian HJ; Lan WH; Lin CP
    J Clin Laser Med Surg; 1996 Dec; 14(6):381-4. PubMed ID: 9467329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective targeting of protein, water, and mineral in dentin using UV and IR pulse lasers: the effect on the bond strength to composite restorative materials.
    Sheth KK; Staninec M; Sarma AV; Fried D
    Lasers Surg Med; 2004; 35(4):245-53. PubMed ID: 15493023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulpal response to Er:YAG laser drilling of dentine in healthy human third molars.
    Nair PN; Baltensperger MM; Luder HU; Eyrich GK
    Lasers Surg Med; 2003; 32(3):203-9. PubMed ID: 12605427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Er:YAG laser treatments on dentine surface: micro-Raman spectroscopy and SEM analysis.
    Camerlingo C; Lepore M; Gaeta GM; Riccio R; Riccio C; De Rosa A; De Rosa M
    J Dent; 2004 Jul; 32(5):399-405. PubMed ID: 15193789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro investigation of the temperature rises produced in dentine by Nd:YAG laser light with and without water cooling.
    Gow AM; McDonald AV; Pearson GJ; Setchell DJ
    Eur J Prosthodont Restor Dent; 1999; 7(2):71-7. PubMed ID: 10865384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Substance ablation with a superpulsed CO2 laser].
    Krejci I; Simunovic K; Lutz F
    Schweiz Monatsschr Zahnmed; 1992; 102(6):693-9. PubMed ID: 1626266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal alteration and morphological changes of sound and demineralized primary dentin after Er:YAG laser ablation.
    Brandão CB; Contente MM; De Lima FA; Galo R; Corrêa-Afonso AM; Bachmann L; Borsatto MC
    Microsc Res Tech; 2012 Feb; 75(2):126-32. PubMed ID: 21761493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin.
    Armengol V; Jean A; Marion D
    J Endod; 2000 Mar; 26(3):138-41. PubMed ID: 11199705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bactericidal effects of diode laser on Streptococcus mutans after irradiation through different thickness of dentin.
    Lee BS; Lin YW; Chia JS; Hsieh TT; Chen MH; Lin CP; Lan WH
    Lasers Surg Med; 2006 Jan; 38(1):62-9. PubMed ID: 16444695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of external cooling on the femtosecond laser ablation of dentin.
    Le QT; Vilar R; Bertrand C
    Lasers Med Sci; 2017 Dec; 32(9):1943-1951. PubMed ID: 28695365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erbium laser ablation of dental hard tissue: effect of water cooling.
    Visuri SR; Walsh JT; Wigdor HA
    Lasers Surg Med; 1996; 18(3):294-300. PubMed ID: 8778525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of copper vapor laser irradiation (lambda = 510.6 nm) on the enamel and dentine of human teeth: an ultra-structural morphologic study.
    Niccoli-Filho W; Penna LA; Rode SM; Riva R
    Photomed Laser Surg; 2004 Dec; 22(6):494-8. PubMed ID: 15684749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.