BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 14709553)

  • 21. Unification of the copper(I) binding affinities of the metallo-chaperones Atx1, Atox1, and related proteins: detection probes and affinity standards.
    Xiao Z; Brose J; Schimo S; Ackland SM; La Fontaine S; Wedd AG
    J Biol Chem; 2011 Apr; 286(13):11047-55. PubMed ID: 21258123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1.
    Banci L; Bertini I; Cantini F; Rosenzweig AC; Yatsunyk LA
    Biochemistry; 2008 Jul; 47(28):7423-9. PubMed ID: 18558714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p.
    Larin D; Mekios C; Das K; Ross B; Yang AS; Gilliam TC
    J Biol Chem; 1999 Oct; 274(40):28497-504. PubMed ID: 10497213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins.
    Wernimont AK; Huffman DL; Lamb AL; O'Halloran TV; Rosenzweig AC
    Nat Struct Biol; 2000 Sep; 7(9):766-71. PubMed ID: 10966647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interdomain interactions modulate collective dynamics of the metal-binding domains in the Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    J Phys Chem B; 2010 Feb; 114(5):1836-48. PubMed ID: 20078131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-mediated homo-dimerisation for the HAH1 metallochaperone.
    Tanchou V; Gas F; Urvoas A; Cougouluègne F; Ruat S; Averseng O; Quéméneur E
    Biochem Biophys Res Commun; 2004 Dec; 325(2):388-94. PubMed ID: 15530404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The different intermolecular interactions of the soluble copper-binding domains of the menkes protein, ATP7A.
    Banci L; Bertini I; Cantini F; Della-Malva N; Migliardi M; Rosato A
    J Biol Chem; 2007 Aug; 282(32):23140-6. PubMed ID: 17545667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enthalpy-entropy compensation at play in human copper ion transfer.
    Niemiec MS; Dingeldein AP; Wittung-Stafshede P
    Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
    Palm ME; Weise CF; Lundin C; Wingsle G; Nygren Y; Björn E; Naredi P; Wolf-Watz M; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6951-6. PubMed ID: 21482801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic and Structural Basis for Inhibition of Copper Trafficking by Platinum Anticancer Drugs.
    Lasorsa A; Nardella MI; Rosato A; Mirabelli V; Caliandro R; Caliandro R; Natile G; Arnesano F
    J Am Chem Soc; 2019 Jul; 141(30):12109-12120. PubMed ID: 31283225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification.
    Dolgova NV; Nokhrin S; Yu CH; George GN; Dmitriev OY
    Biochem J; 2013 Aug; 454(1):147-56. PubMed ID: 23751120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1.
    Banci L; Bertini I; Cantini F; Massagni C; Migliardi M; Rosato A
    J Biol Chem; 2009 Apr; 284(14):9354-60. PubMed ID: 19181666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
    González-Guerrero M; Hong D; Argüello JM
    J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper transporting P-type ATPases and human disease.
    Cox DW; Moore SD
    J Bioenerg Biomembr; 2002 Oct; 34(5):333-8. PubMed ID: 12539960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An expanding range of functions for the copper chaperone/antioxidant protein Atox1.
    Hatori Y; Lutsenko S
    Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain.
    Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P
    J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.