BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 14711120)

  • 21. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids.
    Sekine K; Hase T; Sato N
    J Biol Chem; 2002 Jul; 277(27):24399-404. PubMed ID: 11997391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organelle nuclei in higher plants: structure, composition, function, and evolution.
    Sakai A; Takano H; Kuroiwa T
    Int Rev Cytol; 2004; 238():59-118. PubMed ID: 15364197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastid endosymbiosis, genome evolution and the origin of green plants.
    Stiller JW
    Trends Plant Sci; 2007 Sep; 12(9):391-6. PubMed ID: 17698402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes.
    Reyes-Prieto A; Moustafa A
    Sci Rep; 2012; 2():955. PubMed ID: 23233874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastid ndh genes in plant evolution.
    Martín M; Sabater B
    Plant Physiol Biochem; 2010 Aug; 48(8):636-45. PubMed ID: 20493721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctionality of plastid nucleoids as revealed by proteome analyses.
    Melonek J; Oetke S; Krupinska K
    Biochim Biophys Acta; 2016 Aug; 1864(8):1016-38. PubMed ID: 26987276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
    Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T
    J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do plastid envelope membranes play a role in the expression of the plastid genome?
    Sato N; Rolland N; Block MA; Joyard J
    Biochimie; 1999 Jun; 81(6):619-29. PubMed ID: 10433116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.
    Logacheva MD; Schelkunov MI; Shtratnikova VY; Matveeva MV; Penin AA
    Sci Rep; 2016 Jul; 6():30042. PubMed ID: 27452401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plastid division in an evolutionary context.
    Tveitaskog AE; Maple J; Møller SG
    Biol Chem; 2007 Sep; 388(9):937-42. PubMed ID: 17696777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems.
    Kayama M; Chen JF; Nakada T; Nishimura Y; Shikanai T; Azuma T; Miyashita H; Takaichi S; Kashiyama Y; Kamikawa R
    BMC Biol; 2020 Sep; 18(1):126. PubMed ID: 32938439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development.
    Virdi KS; Wamboldt Y; Kundariya H; Laurie JD; Keren I; Kumar KRS; Block A; Basset G; Luebker S; Elowsky C; Day PM; Roose JL; Bricker TM; Elthon T; Mackenzie SA
    Mol Plant; 2016 Feb; 9(2):245-260. PubMed ID: 26584715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unraveling the complexities of plastid transcription in plants.
    Khan MS
    Trends Biotechnol; 2005 Nov; 23(11):535-8. PubMed ID: 16150501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids.
    Krause K; Oetke S; Krupinska K
    Int J Mol Sci; 2012; 13(9):11085-11101. PubMed ID: 23109840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function.
    Young ND; dePamphilis CW
    BMC Evol Biol; 2005 Feb; 5():16. PubMed ID: 15713237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.