BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 14711120)

  • 41. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes.
    Delannoy E; Fujii S; Colas des Francs-Small C; Brundrett M; Small I
    Mol Biol Evol; 2011 Jul; 28(7):2077-86. PubMed ID: 21289370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The division of pleomorphic plastids with multiple FtsZ rings in tobacco BY-2 cells.
    Momoyama Y; Miyazawa Y; Miyagishima SY; Mori T; Misumi O; Kuroiwa H; Tsuneyoshi K
    Eur J Cell Biol; 2003 Jun; 82(6):323-32. PubMed ID: 12868600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants.
    Kobayashi Y; Otani T; Ishibashi K; Shikanai T; Nishimura Y
    Genome Biol Evol; 2016 May; 8(5):1459-66. PubMed ID: 27189994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation.
    Lin X; Li N; Kudo H; Zhang Z; Li J; Wang L; Zhang W; Takechi K; Takano H
    Plant Cell Physiol; 2017 Mar; 58(3):587-597. PubMed ID: 28158764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coordination of plastid and nuclear gene expression.
    Gray JC; Sullivan JA; Wang JH; Jerome CA; MacLean D
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):135-44; discussion 144-5. PubMed ID: 12594922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The complexity and evolution of the plastid-division machinery.
    Maple J; Møller SG
    Biochem Soc Trans; 2010 Jun; 38(3):783-8. PubMed ID: 20491665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene phylogenies and the endosymbiotic origin of plastids.
    Morden CW; Delwiche CF; Kuhsel M; Palmer JD
    Biosystems; 1992; 28(1-3):75-90. PubMed ID: 1292669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial and temporal characterization of the rich fraction of plastid DNA present in the nuclear genome of Moringa oleifera reveals unanticipated complexity in NUPTs´ formation.
    Marczuk-Rojas JP; Álamo-Sierra AM; Salmerón A; Alcayde A; Isanbaev V; Carretero-Paulet L
    BMC Genomics; 2024 Jan; 25(1):60. PubMed ID: 38225585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids.
    Shivji MS; Li N; Cattolico RA
    Mol Gen Genet; 1992 Mar; 232(1):65-73. PubMed ID: 1552904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes.
    Dorrell RG; Azuma T; Nomura M; Audren de Kerdrel G; Paoli L; Yang S; Bowler C; Ishii KI; Miyashita H; Gile GH; Kamikawa R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6914-6923. PubMed ID: 30872488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Plastidic genome of higher plants and algae: structure and function].
    Odintsova MS; Iurina NP
    Mol Biol (Mosk); 2003; 37(5):768-83. PubMed ID: 14593913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?
    Ball SG; Subtil A; Bhattacharya D; Moustafa A; Weber AP; Gehre L; Colleoni C; Arias MC; Cenci U; Dauvillée D
    Plant Cell; 2013 Jan; 25(1):7-21. PubMed ID: 23371946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.
    Revill MJ; Stanley S; Hibberd JM
    J Exp Bot; 2005 Sep; 56(419):2477-86. PubMed ID: 16061507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development.
    Greiner S; Golczyk H; Malinova I; Pellizzer T; Bock R; Börner T; Herrmann RG
    Plant J; 2020 May; 102(4):730-746. PubMed ID: 31856320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.