BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

803 related articles for article (PubMed ID: 14711306)

  • 1. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge-based design of target-focused libraries using protein-ligand interaction constraints.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2006 Jan; 49(2):490-500. PubMed ID: 16420036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening.
    Chuaqui C; Deng Z; Singh J
    J Med Chem; 2005 Jan; 48(1):121-33. PubMed ID: 15634006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position specific interaction dependent scoring technique for virtual screening based on weighted protein--ligand interaction fingerprint profiles.
    Nandigam RK; Kim S; Singh J; Chuaqui C
    J Chem Inf Model; 2009 May; 49(5):1185-92. PubMed ID: 19415918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural interaction fingerprints: a new approach to organizing, mining, analyzing, and designing protein-small molecule complexes.
    Singh J; Deng Z; Narale G; Chuaqui C
    Chem Biol Drug Des; 2006 Jan; 67(1):5-12. PubMed ID: 16492144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design.
    Kelly MD; Mancera RL
    J Chem Inf Comput Sci; 2004; 44(6):1942-51. PubMed ID: 15554663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking.
    Kolb P; Caflisch A
    J Med Chem; 2006 Dec; 49(25):7384-92. PubMed ID: 17149868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses.
    Wallach I; Lilien R
    J Chem Inf Model; 2009 Sep; 49(9):2116-28. PubMed ID: 19711952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORES: an automated method for generating three-dimensional models of protein/ligand complexes.
    Hare BJ; Walters WP; Caron PR; Bemis GW
    J Med Chem; 2004 Sep; 47(19):4731-40. PubMed ID: 15341488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLEXS: a method for fast flexible ligand superposition.
    Lemmen C; Lengauer T; Klebe G
    J Med Chem; 1998 Nov; 41(23):4502-20. PubMed ID: 9804690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information.
    Tan L; Batista J; Bajorath J
    Chem Biol Drug Des; 2010 Sep; 76(3):191-200. PubMed ID: 20636330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.
    Pastor M; Cruciani G; Watson KA
    J Med Chem; 1997 Dec; 40(25):4089-102. PubMed ID: 9406599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a ligand-receptor binding event using receptor-dependent four-dimensional quantitative structure-activity relationship analysis.
    Pan D; Liu J; Senese C; Hopfinger AJ; Tseng Y
    J Med Chem; 2004 Jun; 47(12):3075-88. PubMed ID: 15163189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF; Gohlke H; Klebe G
    J Med Chem; 2005 Oct; 48(20):6296-303. PubMed ID: 16190756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.