BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14711585)

  • 21. Domain structure and interaction within the pentafunctional arom polypeptide.
    Hawkins AR; Smith M
    Eur J Biochem; 1991 Mar; 196(3):717-24. PubMed ID: 1849480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel DNA repair enzyme containing RNA recognition, G-patch and specific splicing factor 45-like motifs in the protozoan parasite Toxoplasma gondii.
    Dendouga N; Callebaut I; Tomavo S
    Eur J Biochem; 2002 Jul; 269(14):3393-401. PubMed ID: 12135477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic complementation in apicomplexan parasites.
    Striepen B; White MW; Li C; Guerini MN; Malik SB; Logsdon JM; Liu C; Abrahamsen MS
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6304-9. PubMed ID: 11959921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overproduction of, and interaction within, bifunctional domains from the amino- and carboxy-termini of the pentafunctional AROM protein of Aspergillus nidulans.
    Moore JD; Hawkins AR
    Mol Gen Genet; 1993 Jul; 240(1):92-102. PubMed ID: 8393515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway.
    Ávila AR; Cabezas-Cruz A; Gissot M
    Parasit Vectors; 2018 Jan; 11(1):62. PubMed ID: 29370868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains.
    Duncan K; Edwards RM; Coggins JR
    Biochem J; 1987 Sep; 246(2):375-86. PubMed ID: 2825635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and characterization of a novel histone acetyltransferase homologue from the protozoan parasite Toxoplasma gondii reveals a distinct GCN5 family member.
    Sullivan WJ; Smith CK
    Gene; 2000 Jan; 242(1-2):193-200. PubMed ID: 10721712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.
    Fleige T; Pfaff N; Gross U; Bohne W
    Int J Parasitol; 2008 Aug; 38(10):1121-32. PubMed ID: 18336823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.
    Archibald JM; Logsdon JM; Doolittle WF
    Mol Biol Evol; 2000 Oct; 17(10):1456-66. PubMed ID: 11018153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overproduction by gene amplification of the multifunctional arom protein confers glyphosate tolerance to a plastid-free mutant of Euglena gracilis.
    Reinbothe S; Ortel B; Parthier B
    Mol Gen Genet; 1993 Jun; 239(3):416-24. PubMed ID: 8391114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa.
    Nagamune K; Sibley LD
    Mol Biol Evol; 2006 Aug; 23(8):1613-27. PubMed ID: 16751258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How old are the extant lineages of Toxoplasma gondii?
    Morrison DA
    Parassitologia; 2005 Jun; 47(2):205-14. PubMed ID: 16252475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication.
    Madern D; Cai X; Abrahamsen MS; Zhu G
    Mol Biol Evol; 2004 Mar; 21(3):489-97. PubMed ID: 14694073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bradyzoite stage-specifically expressed gene of Toxoplasma gondii encodes a polypeptide homologous to lactate dehydrogenase.
    Yang S; Parmley SF
    Mol Biochem Parasitol; 1995 Jul; 73(1-2):291-4. PubMed ID: 8577343
    [No Abstract]   [Full Text] [Related]  

  • 36. Comparative analysis of apicomplexa and genomic diversity in eukaryotes.
    Templeton TJ; Iyer LM; Anantharaman V; Enomoto S; Abrahante JE; Subramanian GM; Hoffman SL; Abrahamsen MS; Aravind L
    Genome Res; 2004 Sep; 14(9):1686-95. PubMed ID: 15342554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterisation of a Cryptosporidium parvum rhoptry protein candidate related to the rhoptry neck proteins TgRON1 of Toxoplasma gondii and PfASP of Plasmodium falciparum.
    Valentini E; Cherchi S; Possenti A; Dubremetz JF; Pozio E; Spano F
    Mol Biochem Parasitol; 2012 May; 183(1):94-9. PubMed ID: 22343414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating low level sequence identities. Are Aspergillus QUTA and AROM homologous?
    Nicholas HB; Arst HN; Caddick MX
    Eur J Biochem; 2001 Jan; 268(2):414-9. PubMed ID: 11168377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A plastid segregation defect in the protozoan parasite Toxoplasma gondii.
    He CY; Shaw MK; Pletcher CH; Striepen B; Tilney LG; Roos DS
    EMBO J; 2001 Feb; 20(3):330-9. PubMed ID: 11157740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apicomplexa genes involved in the host cell invasion: the Cpa135 protein family.
    Tosini F; Trasarti E; Pozio E
    Parassitologia; 2006 Jun; 48(1-2):105-7. PubMed ID: 16881408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.