BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 14711624)

  • 1. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor.
    Werlen C; Jaspers MC; van der Meer JR
    Appl Environ Microbiol; 2004 Jan; 70(1):43-51. PubMed ID: 14711624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial chemotaxis along vapor-phase gradients of naphthalene.
    Hanzel J; Harms H; Wick LY
    Environ Sci Technol; 2010 Dec; 44(24):9304-10. PubMed ID: 21080701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A recombinant Escherichia coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases.
    Cho JH; Lee DY; Lim WK; Shin HJ
    Prep Biochem Biotechnol; 2014; 44(8):849-60. PubMed ID: 24621193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.
    Heitzer A; Malachowsky K; Thonnard JE; Bienkowski PR; White DC; Sayler GS
    Appl Environ Microbiol; 1994 May; 60(5):1487-94. PubMed ID: 8017932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil.
    Park W; Madsen EL
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):209-16. PubMed ID: 15278309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353.
    Dorn JG; Frye RJ; Maier RM
    Appl Environ Microbiol; 2003 Apr; 69(4):2209-16. PubMed ID: 12676702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial growth with vapor-phase substrate.
    Hanzel J; Thullner M; Harms H; Wick LY
    Environ Pollut; 2011 Apr; 159(4):858-64. PubMed ID: 21277662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA.
    Park W; Padmanabhan P; Padmanabhan S; Zylstra GJ; Madsen EL
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2319-2329. PubMed ID: 12177326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid.
    Law AM; Aitken MD
    Appl Environ Microbiol; 2003 Oct; 69(10):5968-73. PubMed ID: 14532051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Ban YM; Lee CH; Chung CH; Ahn IS
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):91-6. PubMed ID: 18023561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites.
    Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and plasmid-encoded naphthalene catabolism of Pseudomonas putida in batch culture.
    Boronin AM; Filonov AE; Gayazov RR; Kulakova AN; Mshensky YN
    FEMS Microbiol Lett; 1993 Nov; 113(3):303-7. PubMed ID: 8270196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax.
    Kohlmeier S; Mancuso M; Deepthike U; Tecon R; van der Meer JR; Harms H; Wells M
    Environ Pollut; 2008 Dec; 156(3):803-8. PubMed ID: 18635297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant.
    Paton GI; Reid BJ; Semple KT
    Environ Pollut; 2009 May; 157(5):1643-8. PubMed ID: 19200630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil].
    Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition of plasmid-bearing Pseudomonas putida strains catabolizing naphthalene via various pathways in chemostat culture.
    Filonov AE; Duetz WA; Karpov AV; Gaiazov RR; Kosheleva IA; Breure AM; Filonova IF; van Andel JG; Boronin AM
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):493-8. PubMed ID: 9390458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The role of mineral phosphorus compounds in naphthalene biodegradation by Pseudomonas putida].
    Puntus IF; Ryazanova LP; Zvonarev AN; Funtikova TV; Kulakovskaya TV
    Prikl Biokhim Mikrobiol; 2015; 51(2):198-205. PubMed ID: 26027355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1.
    Park W; Jeon CO; Hohnstock-Ashe AM; Winans SC; Zylstra GJ; Madsen EL
    Appl Environ Microbiol; 2003 Jun; 69(6):3263-71. PubMed ID: 12788725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.