These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 14711633)

  • 1. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764.
    Fernandez RF; Dolghih E; Kunz DA
    Appl Environ Microbiol; 2004 Jan; 70(1):121-8. PubMed ID: 14711633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase.
    Kunz DA; Fernandez RF; Parab P
    Biochem Biophys Res Commun; 2001 Sep; 287(2):514-8. PubMed ID: 11554758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Wang CS; Chen JL
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1705-12. PubMed ID: 8075806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate.
    Fernandez RF; Kunz DA
    J Bacteriol; 2005 Sep; 187(18):6396-402. PubMed ID: 16159773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion.
    Kunz DA; Nagappan O; Silva-Avalos J; Delong GT
    Appl Environ Microbiol; 1992 Jun; 58(6):2022-9. PubMed ID: 1622281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide.
    Mak KK; Law AW; Tokuda S; Yanase H; Renneberg R
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):631-6. PubMed ID: 15630582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of alpha-keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Chen JL; Pan G
    Appl Environ Microbiol; 1998 Nov; 64(11):4452-9. PubMed ID: 9797306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanide utilization and degradation by microorganisms.
    Knowles CJ
    Ciba Found Symp; 1988; 140():3-15. PubMed ID: 3073060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of Molecular Oxygen and Water during Enzymatic Oxidation of Cyanide by Pseudomonas fluorescens NCIMB 11764.
    Wang C; Kunz DA; Venables BJ
    Appl Environ Microbiol; 1996 Jun; 62(6):2195-7. PubMed ID: 16535345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Latif Ibrahim A; Cass AE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):357-64. PubMed ID: 25723061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analeptic agent from microbes upon cyanide degradation.
    Murugesan T; Durairaj N; Ramasamy M; Jayaraman K; Palaniswamy M; Jayaraman A
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1557-1565. PubMed ID: 29285551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria.
    Mahendran R; Thandeeswaran M; Kiran G; Arulkumar M; Ayub Nawaz KA; Jabastin J; Janani B; Anto Thomas T; Angayarkanni J
    Curr Microbiol; 2018 Jun; 75(6):684-693. PubMed ID: 29380042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.
    Kandasamy S; Dananjeyan B; Krishnamurthy K; Benckiser G
    Braz J Microbiol; 2015; 46(3):659-66. PubMed ID: 26413045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764.
    Kunz DA; Nagappan O
    Appl Environ Microbiol; 1989 Jan; 55(1):256-8. PubMed ID: 2495763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors.
    Mahendran R; Bs S; Thandeeswaran M; kG K; Vijayasarathy M; Angayarkanni J; Muthusamy G
    Curr Microbiol; 2020 Apr; 77(4):578-587. PubMed ID: 31111225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Respiratory resistance of methylotrophic bacteria to formate and cyanide].
    Zakharova EV; Rodionov IuV; Ivanovskiĭ RN
    Mikrobiologiia; 1980; 49(2):215-20. PubMed ID: 6248741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free extract(s) of Pseudomonas putida catalyzes the conversion of cyanides, cyanates, thiocyanates, formamide, and cyanide-containing mine waters into ammonia.
    Babu GR; Vijaya OK; Ross VL; Wolfram JH; Chapatwala KD
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):273-7. PubMed ID: 8920201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.
    Durairaju Nisshanthini S; Teresa Infanta S AK; Raja DS; Natarajan K; Palaniswamy M; Angayarkanni J
    J Microbiol; 2015 Apr; 53(4):262-71. PubMed ID: 25740375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.
    Vilo CA; Benedik MJ; Kunz DA; Dong Q
    J Bacteriol; 2012 Dec; 194(23):6618-9. PubMed ID: 23144379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.