These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 14711660)

  • 1. Successful predation of filamentous bacteria by a nanoflagellate challenges current models of flagellate bacterivory.
    Wu QL; Boenigk J; Hahn MW
    Appl Environ Microbiol; 2004 Jan; 70(1):332-9. PubMed ID: 14711660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.).
    Pfandl K; Posch T; Boenigk J
    J Eukaryot Microbiol; 2004; 51(6):626-33. PubMed ID: 15666719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates.
    Boenigk J; Matz AC; Jurgens K; Arndt H
    J Eukaryot Microbiol; 2001; 48(4):425-32. PubMed ID: 11456318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nutrient availability and Ochromonas sp. predation on size and composition of a simplified aquatic bacterial community.
    Corno G
    FEMS Microbiol Ecol; 2006 Dec; 58(3):354-63. PubMed ID: 17117980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prey food quality affects flagellate ingestion rates.
    Shannon SP; Chrzanowski TH; Grover JP
    Microb Ecol; 2007 Jan; 53(1):66-73. PubMed ID: 17186152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and nutritional ecology of a nanoflagellate preying upon bacteria.
    Grover JP; Chrzanowski TH
    Microb Ecol; 2009 Aug; 58(2):231-43. PubMed ID: 19184185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity.
    Corno G; Jürgens K
    Appl Environ Microbiol; 2006 Jan; 72(1):78-86. PubMed ID: 16391028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates.
    Matz C; Deines P; Boenigk J; Arndt H; Eberl L; Kjelleberg S; Jürgens K
    Appl Environ Microbiol; 2004 Mar; 70(3):1593-9. PubMed ID: 15006783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes.
    Kwon JE; Jeong HJ; Kim SJ; Jang SH; Lee KH; Seong KA
    Harmful Algae; 2017 Sep; 68():224-239. PubMed ID: 28962983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Preculture Conditions and Food Quality on the Ingestion and Digestion Process of Three Species of Heterotrophic Nanoflagellates.
    Boenigk J; Matz C; Jürgens K; Arndt H
    Microb Ecol; 2001 Aug; 42(2):168-176. PubMed ID: 12024279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress.
    Xinyao L; Miao S; Yonghong L; Yin G; Zhongkai Z; Donghui W; Weizhong W; Chencai A
    Microb Ecol; 2006 Apr; 51(3):315-25. PubMed ID: 16598635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High motility reduces grazing mortality of planktonic bacteria.
    Matz C; Jürgens K
    Appl Environ Microbiol; 2005 Feb; 71(2):921-9. PubMed ID: 15691949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition.
    Hahn MW; Höfle MG
    Appl Environ Microbiol; 1999 Nov; 65(11):4863-72. PubMed ID: 10543797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster.
    Boenigk J; Stadler P; Wiedlroither A; Hahn MW
    Appl Environ Microbiol; 2004 Oct; 70(10):5787-93. PubMed ID: 15466515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle handling during interception feeding by four species of heterotrophic nanoflagellates.
    Boenigk J; Arndt H
    J Eukaryot Microbiol; 2000; 47(4):350-8. PubMed ID: 11140448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predation in a Microbial World: Mechanisms and Trade-Offs of Flagellate Foraging.
    Kiørboe T
    Ann Rev Mar Sci; 2024 Jan; 16():361-381. PubMed ID: 37368955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Microcolony Formation in the Protistan Grazing Defense of the Aquatic Bacterium Pseudomonas sp. MWH1.
    Hahn MW; Moore ER; Höfle MG
    Microb Ecol; 2000 Apr; 39(3):175-185. PubMed ID: 12035094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grazing Pressure by a Bacterivorous Flagellate Reverses the Relative Abundance of Comamonas acidovorans PX54 and Vibrio Strain CB5 in Chemostat Cocultures.
    Hahn MW; Höfle MG
    Appl Environ Microbiol; 1998 May; 64(5):1910-8. PubMed ID: 9572971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage.
    Pernthaler J; Posch T; Simek K; Vrba J; Amann R; Psenner R
    Appl Environ Microbiol; 1997 Feb; 63(2):596-601. PubMed ID: 16535516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Element stoichiometry of a mixotrophic protist grown under varying resource conditions.
    Chrzanowski TH; Lukomski NC; Grover JP
    J Eukaryot Microbiol; 2010; 57(4):322-7. PubMed ID: 20561118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.