BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 14712091)

  • 21. A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos.
    Hartley RS; Sible JC; Lewellyn AL; Maller JL
    Dev Biol; 1997 Aug; 188(2):312-21. PubMed ID: 9268577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis.
    Yoshitome S; Aiba Y; Yuge M; Furuno N; Watanabe M; Nakajo N
    Biochem Biophys Res Commun; 2019 Jul; 515(1):139-144. PubMed ID: 31128913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos.
    Murakami MS; Vande Woude GF
    Development; 1998 Jan; 125(2):237-48. PubMed ID: 9486797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antisense knockdown of cyclin E does not affect the midblastula transition in Xenopus laevis embryos.
    Slevin MK; Lyons-Levy G; Weeks DL; Hartley RS
    Cell Cycle; 2005 Oct; 4(10):1396-402. PubMed ID: 16131839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis.
    Wroble BN; Sible JC
    Dev Dyn; 2005 Aug; 233(4):1359-65. PubMed ID: 15937936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development.
    Jevtić P; Mukherjee RN; Chen P; Levy DL
    PLoS One; 2019; 14(4):e0215740. PubMed ID: 31009515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II.
    Hutchins JR; Dikovskaya D; Clarke PR
    Mol Biol Cell; 2003 Oct; 14(10):4003-14. PubMed ID: 14517314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition.
    Sibon OC; Laurençon A; Hawley R; Theurkauf WE
    Curr Biol; 1999 Mar; 9(6):302-12. PubMed ID: 10209095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus.
    McGarry TJ
    Mol Biol Cell; 2002 Oct; 13(10):3662-71. PubMed ID: 12388764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple Cdk1 inhibitory kinases regulate the cell cycle during development.
    Leise W; Mueller PR
    Dev Biol; 2002 Sep; 249(1):156-73. PubMed ID: 12217326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.
    Uto K; Inoue D; Shimuta K; Nakajo N; Sagata N
    EMBO J; 2004 Aug; 23(16):3386-96. PubMed ID: 15272308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclin A1/Cdk2 is sufficient but not required for the induction of apoptosis in early Xenopus laevis embryos.
    Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2006 Oct; 5(19):2230-6. PubMed ID: 16969089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual inhibition of Cdc2 protein kinase activation during apoptosis in Xenopus egg extracts.
    Tsuchiya Y; Murai S; Yamashita S
    FEBS J; 2015 Apr; 282(7):1256-70. PubMed ID: 25631627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests.
    Stanford JS; Ruderman JV
    Mol Biol Cell; 2005 Dec; 16(12):5749-60. PubMed ID: 16195348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos.
    Ueno S; Kono R; Iwao Y
    Dev Biol; 2006 Sep; 297(1):274-83. PubMed ID: 16919259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis.
    Jevtić P; Levy DL
    Sci Rep; 2017 Aug; 7(1):7908. PubMed ID: 28801588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development.
    Nakajo N; Deno YK; Ueno H; Kenmochi C; Shimuta K; Sagata N
    Int J Dev Biol; 2011; 55(6):627-32. PubMed ID: 21948711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition.
    Dalle Nogare DE; Pauerstein PT; Lane ME
    Dev Biol; 2009 Feb; 326(1):131-42. PubMed ID: 19063878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio.
    Strong IJT; Lei X; Chen F; Yuan K; O'Farrell PH
    PLoS Biol; 2020 Oct; 18(10):e3000891. PubMed ID: 33090988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest.
    Isoda M; Kanemori Y; Nakajo N; Uchida S; Yamashita K; Ueno H; Sagata N
    Mol Biol Cell; 2009 Apr; 20(8):2186-95. PubMed ID: 19244340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.