These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 14712477)

  • 1. Chiral symmetry-breaking transition in growth front of crystal phase of 1,1'-binaphthyl in its supercooled melt.
    Asakura K; Nagasaka Y; Hidaka M; Hayashi M; Osanai S; Kondepudi DK
    Chirality; 2004 Feb; 16(2):131-6. PubMed ID: 14712477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence and theoretical analysis for the chiral symmetry breaking in the growth front of conglomerate crystal phase of 1,1'-binaphthyl.
    Asakura K; Plasson R; Kondepudi DK
    Chaos; 2006 Sep; 16(3):037116. PubMed ID: 17014250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic model for the chiral symmetry breaking transition in the growth front of a conglomerate crystal phase.
    Asakura K; Nagasaka Y; Osanai S; Kondepudi DK
    J Phys Chem B; 2005 Feb; 109(4):1586-92. PubMed ID: 16851129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral symmetry breaking and polymorphism in 1,1'-binaphthyl melt crystallization.
    Sainz-Díaz CI; Martín-Islan AP; Cartwright JH
    J Phys Chem B; 2005 Oct; 109(40):18758-64. PubMed ID: 16853413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of latent heat in chiral symmetry breaking transition in the crystallization of 1,1'-binaphthyl.
    Asakura K; Hayashi M; Osanai S
    Chirality; 2003 Mar; 15(3):238-41. PubMed ID: 12582990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability distributions of enantiomeric excess in unstirred and stirred crystallization of 1,1'-binaphthyl melt.
    Asakura K; Soga T; Uchida T; Osanai S; Kondepudi DK
    Chirality; 2002 Jan; 14(1):85-9. PubMed ID: 11748806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction and inhibition of preferential enrichment by controlling the mode of the polymorphic transition with seed crystals.
    Tamura R; Mizuta M; Yabunaka S; Fujimoto D; Ariga T; Okuhara S; Ikuma N; Takahashi H; Tsue H
    Chemistry; 2006 Apr; 12(13):3515-27. PubMed ID: 16502450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous achiral symmetry breaking in liquid crystalline phases.
    Takezoe H
    Top Curr Chem; 2012; 318():303-30. PubMed ID: 21915774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of molecular chiral asymmetry through stirred crystallization.
    Durand DJ; Kondepudi DK; Moreira PF; Quina FH
    Chirality; 2002 May; 14(4):284-7. PubMed ID: 11968067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer.
    Yamamoto T
    J Chem Phys; 2008 Nov; 129(18):184903. PubMed ID: 19045427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition.
    Hatch HW; Stillinger FH; Debenedetti PG
    J Chem Phys; 2010 Dec; 133(22):224502. PubMed ID: 21171686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional description of the spontaneous onset of homochirality on the surface of a conglomerate crystal phase.
    Plasson R; Kondepudi DK; Asakura K
    J Phys Chem B; 2006 Apr; 110(16):8481-7. PubMed ID: 16623535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of helical oligomers with chirality selection. I. A molecular dynamics simulation for bare helix.
    Yamamoto T
    J Chem Phys; 2006 Aug; 125(6):64902. PubMed ID: 16942307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient chiral resolution of DL-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions.
    Iwama S; Kuyama K; Mori Y; Manoj K; Gonnade RG; Suzuki K; Hughes CE; Williams PA; Harris KD; Veesler S; Takahashi H; Tsue H; Tamura R
    Chemistry; 2014 Aug; 20(33):10343-50. PubMed ID: 25042834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification of chirality in two-dimensional enantiomorphous lattices.
    Fasel R; Parschau M; Ernst KH
    Nature; 2006 Jan; 439(7075):449-52. PubMed ID: 16437111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degree of supersaturation-regulated chiral symmetry breaking in one crystal.
    Liu M; Qiu C; Guo Z; Qi L; Xie M; Chen Y
    J Phys Chem B; 2007 Oct; 111(39):11346-9. PubMed ID: 17824693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous symmetry breaking during interrupted crystallization of an axially chiral amino acid derivative.
    Sephton MA; Emerson CR; Zakharov LN; Blakemore PR
    Chem Commun (Camb); 2010 Mar; 46(12):2094-6. PubMed ID: 20221503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.
    Tschierske C; Ungar G
    Chemphyschem; 2016 Jan; 17(1):9-26. PubMed ID: 26416335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics methodology to investigate steady-state heterogeneous crystal growth.
    Vatamanu J; Kusalik PG
    J Chem Phys; 2007 Mar; 126(12):124703. PubMed ID: 17411148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.