These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14712678)

  • 21. Rapid quench mixing to quantify kinetics of steps in association of Escherichia coli RNA polymerase with promoter DNA.
    Saecker RM; Tsodikov OV; Capp MW; Record MT
    Methods Enzymol; 2003; 370():535-46. PubMed ID: 14712673
    [No Abstract]   [Full Text] [Related]  

  • 22. Energetic contributions to the initiation of transcription in E. coli.
    Ramprakash J; Schwarz FP
    Biophys Chem; 2008 Dec; 138(3):91-8. PubMed ID: 18834656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimal machinery of RNA polymerase holoenzyme sufficient for promoter melting.
    Young BA; Gruber TM; Gross CA
    Science; 2004 Feb; 303(5662):1382-4. PubMed ID: 14988563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress.
    Shah IM; Wolf RE
    J Mol Biol; 2004 Oct; 343(3):513-32. PubMed ID: 15465042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic fluorescence of E. coli RNA polymerase as a probe for its conformational changes during transcription initiation.
    Sen R; Dasgupta D
    Biochem Biophys Res Commun; 1994 Jun; 201(2):820-8. PubMed ID: 8003019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational changes of E. coli RNA polymerase during transcription initiation.
    Sen R; Dasgupta D
    Biophys Chem; 1996 Jan; 57(2-3):269-78. PubMed ID: 8573680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy.
    Datta K; Johnson NP; von Hippel PH
    J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assay of prokaryotic enhancer activity over a distance in vitro.
    Bondarenko V; Liu YV; Ninfa AJ; Studitsky VM
    Methods Enzymol; 2003; 370():324-37. PubMed ID: 14712657
    [No Abstract]   [Full Text] [Related]  

  • 29. Conformational changes of Escherichia coli sigma54-RNA-polymerase upon closed-promoter complex formation.
    Ray P; Hall RJ; Finn RD; Chen S; Patwardhan A; Buck M; van Heel M
    J Mol Biol; 2005 Nov; 354(2):201-5. PubMed ID: 16246367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with its DNA target site and with domain 4 of the RNA polymerase sigma subunit.
    Grainger DC; Webster CL; Belyaeva TA; Hyde EI; Busby SJ
    Mol Microbiol; 2004 Mar; 51(5):1297-309. PubMed ID: 14982625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and activity assays of RapA, the RNA polymerase-associated homolog of the SWI/SNF protein superfamily.
    Sukhodolets MV; Garges S; Jin DJ
    Methods Enzymol; 2003; 370():283-90. PubMed ID: 14712653
    [No Abstract]   [Full Text] [Related]  

  • 32. In vitro studies of the early steps of RNA synthesis by human RNA polymerase II.
    Kugel JF; Goodrich JA
    Methods Enzymol; 2003; 370():687-701. PubMed ID: 14712684
    [No Abstract]   [Full Text] [Related]  

  • 33. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with the C-terminal domain of the RNA polymerase alpha subunit.
    Grainger DC; Belyaeva TA; Lee DJ; Hyde EI; Busby SJ
    Mol Microbiol; 2004 Mar; 51(5):1311-20. PubMed ID: 14982626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profiling RNA polymerase-promoter interaction by using ssDNA-dsDNA probe on a surface addressable microarray.
    Ng JK; Ajikumar PK; Stephanopoulos G; Too HP
    Chembiochem; 2007 Sep; 8(14):1667-70. PubMed ID: 17705343
    [No Abstract]   [Full Text] [Related]  

  • 35. Mutational analysis and structure of the phage SP6 promoter.
    Shin I; Kang C
    Methods Enzymol; 2003; 370():658-68. PubMed ID: 14712682
    [No Abstract]   [Full Text] [Related]  

  • 36. Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step.
    Roy S; Lim HM; Liu M; Adhya S
    EMBO J; 2004 Feb; 23(4):869-75. PubMed ID: 14963488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification of highly-active and soluble Escherichia coli sigma 70 polypeptide overproduced at low temperature.
    Zhi H; Jin DJ
    Methods Enzymol; 2003; 370():174-80. PubMed ID: 14712643
    [No Abstract]   [Full Text] [Related]  

  • 38. Molecular gymnastics: distortion of an RNA polymerase sigma factor.
    Hinton DM
    Trends Microbiol; 2005 Apr; 13(4):140-3. PubMed ID: 15817381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principles and methods of affinity cleavage in studying transcription.
    Meares CF; Datwyler SA; Schmidt BD; Owens J; Ishihama A
    Methods Enzymol; 2003; 371():82-106. PubMed ID: 14712693
    [No Abstract]   [Full Text] [Related]  

  • 40. Assay of antitermination of ribosomal RNA transcription.
    Squires CL; Condon C; Seoh HK
    Methods Enzymol; 2003; 371():472-87. PubMed ID: 14712722
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.